រំលងទៅមាតិកាមេ
ដាក់ជាកត្តា
Tick mark Image
វាយតម្លៃ
Tick mark Image

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

a+b=-8 ab=9\left(-1\right)=-9
ដាក់ជាកត្តានូវកន្សោម​ដោយដាក់ជាក្រុម។ ដំបូង​ កន្សោម​ត្រូវតែសរសេរឡើងវិញជា 9p^{2}+ap+bp-1។ ដើម្បីរក a និង b សូមបង្កើត​ប្រព័ន្ធដែល​ត្រូវដោះស្រាយ។
1,-9 3,-3
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន ចំនួនអវិជ្ជមានមានតម្លៃដាច់ខាតធំជាង​ចំនួនវិជ្ជមាន។ រាយ​ឈ្មោះគូ​ទាំងអស់ដែល​ផ្ដល់នូវផលគុណ -9។
1-9=-8 3-3=0
គណនី​ផល​បូកសម្រាប់គូនីមួយៗ។
a=-9 b=1
ចម្លើយគឺជា​គូ ដែលផ្ដល់​នូវផលបូក -8 ។
\left(9p^{2}-9p\right)+\left(p-1\right)
សរសេរ 9p^{2}-8p-1 ឡើងវិញជា \left(9p^{2}-9p\right)+\left(p-1\right)។
9p\left(p-1\right)+p-1
ដាក់ជាកត្តា 9p នៅក្នុង 9p^{2}-9p។
\left(p-1\right)\left(9p+1\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា p-1 ដោយប្រើលក្ខណៈបំបែក។
9p^{2}-8p-1=0
ពហុធាកាដ្រាទីកអាចត្រូវបានដាក់ជាកត្តាដោយប្រើការបម្លែង ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ដែល x_{1} និង x_{2} គឺជា​ចម្លើយនៃ​សមីការរកាដ្រាទីក ax^{2}+bx+c=0។
p=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 9\left(-1\right)}}{2\times 9}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
p=\frac{-\left(-8\right)±\sqrt{64-4\times 9\left(-1\right)}}{2\times 9}
ការ៉េ -8។
p=\frac{-\left(-8\right)±\sqrt{64-36\left(-1\right)}}{2\times 9}
គុណ -4 ដង 9។
p=\frac{-\left(-8\right)±\sqrt{64+36}}{2\times 9}
គុណ -36 ដង -1។
p=\frac{-\left(-8\right)±\sqrt{100}}{2\times 9}
បូក 64 ជាមួយ 36។
p=\frac{-\left(-8\right)±10}{2\times 9}
យកឬសការ៉េនៃ 100។
p=\frac{8±10}{2\times 9}
ភាពផ្ទុយគ្នានៃ -8 គឺ 8។
p=\frac{8±10}{18}
គុណ 2 ដង 9។
p=\frac{18}{18}
ឥឡូវដោះស្រាយសមីការរ p=\frac{8±10}{18} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 8 ជាមួយ 10។
p=1
ចែក 18 នឹង 18។
p=-\frac{2}{18}
ឥឡូវដោះស្រាយសមីការរ p=\frac{8±10}{18} នៅពេល ± គឺជាសញ្ញាដក។ ដក 10 ពី 8។
p=-\frac{1}{9}
កាត់បន្ថយប្រភាគ \frac{-2}{18} ទៅតួដែលតូចបំផុតដោយ​ដក និងលុបចេញ 2។
9p^{2}-8p-1=9\left(p-1\right)\left(p-\left(-\frac{1}{9}\right)\right)
ដាក់កន្សោមដើមដាក់ជាកត្តា​ដោយប្រើ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)។ ជំនួស 1 សម្រាប់ x_{1} និង -\frac{1}{9} សម្រាប់ x_{2}។
9p^{2}-8p-1=9\left(p-1\right)\left(p+\frac{1}{9}\right)
សម្រួលកន្សោមទាំងអស់នៃទម្រង់ p-\left(-q\right) ទៅ p+q។
9p^{2}-8p-1=9\left(p-1\right)\times \frac{9p+1}{9}
បូក \frac{1}{9} ជាមួយ p ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
9p^{2}-8p-1=\left(p-1\right)\left(9p+1\right)
សម្រួល 9 ដែលជាកត្តារួមធំបំផុតរវាង 9 និង 9។