ដាក់ជាកត្តា
3z\left(3z+1\right)\left(9z+1\right)
វាយតម្លៃ
3z\left(3z+1\right)\left(9z+1\right)
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
3\left(27z^{3}+12z^{2}+z\right)
ដាក់ជាកត្តា 3។
z\left(27z^{2}+12z+1\right)
ពិនិត្យ 27z^{3}+12z^{2}+z។ ដាក់ជាកត្តា z។
a+b=12 ab=27\times 1=27
ពិនិត្យ 27z^{2}+12z+1។ ដាក់ជាកត្តានូវកន្សោមដោយដាក់ជាក្រុម។ ដំបូង កន្សោមត្រូវតែសរសេរឡើងវិញជា 27z^{2}+az+bz+1។ ដើម្បីរក a និង b សូមបង្កើតប្រព័ន្ធដែលត្រូវដោះស្រាយ។
1,27 3,9
ដោយសារ ab ជាចំនួនវិជ្ជមាន a និង b មានសញ្ញាដូចគ្នា។ ដោយសារ a+b ជាចំនួនវិជ្ជមាន a ហើយ b ជាចំនួនវិជ្ជមានទាំងពីរ។ រាយឈ្មោះគូទាំងអស់ដែលផ្ដល់នូវផលគុណ 27។
1+27=28 3+9=12
គណនីផលបូកសម្រាប់គូនីមួយៗ។
a=3 b=9
ចម្លើយគឺជាគូ ដែលផ្ដល់នូវផលបូក 12 ។
\left(27z^{2}+3z\right)+\left(9z+1\right)
សរសេរ 27z^{2}+12z+1 ឡើងវិញជា \left(27z^{2}+3z\right)+\left(9z+1\right)។
3z\left(9z+1\right)+9z+1
ដាក់ជាកត្តា 3z នៅក្នុង 27z^{2}+3z។
\left(9z+1\right)\left(3z+1\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា 9z+1 ដោយប្រើលក្ខណៈបំបែក។
3z\left(9z+1\right)\left(3z+1\right)
សរសេរកន្សោមដែលបានដាក់ជាកត្តាពេញលេញឡើងវិញ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}