ដាក់ជាកត្តា
\left(2x-3\right)\left(4x+3\right)
វាយតម្លៃ
\left(2x-3\right)\left(4x+3\right)
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
a+b=-6 ab=8\left(-9\right)=-72
ដាក់ជាកត្តានូវកន្សោមដោយដាក់ជាក្រុម។ ដំបូង កន្សោមត្រូវតែសរសេរឡើងវិញជា 8x^{2}+ax+bx-9។ ដើម្បីរក a និង b សូមបង្កើតប្រព័ន្ធដែលត្រូវដោះស្រាយ។
1,-72 2,-36 3,-24 4,-18 6,-12 8,-9
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន ចំនួនអវិជ្ជមានមានតម្លៃដាច់ខាតធំជាងចំនួនវិជ្ជមាន។ រាយឈ្មោះគូទាំងអស់ដែលផ្ដល់នូវផលគុណ -72។
1-72=-71 2-36=-34 3-24=-21 4-18=-14 6-12=-6 8-9=-1
គណនីផលបូកសម្រាប់គូនីមួយៗ។
a=-12 b=6
ចម្លើយគឺជាគូ ដែលផ្ដល់នូវផលបូក -6 ។
\left(8x^{2}-12x\right)+\left(6x-9\right)
សរសេរ 8x^{2}-6x-9 ឡើងវិញជា \left(8x^{2}-12x\right)+\left(6x-9\right)។
4x\left(2x-3\right)+3\left(2x-3\right)
ដាក់ជាកត្តា 4x នៅក្នុងក្រុមទីមួយ និង 3 ក្រុមទីពីរចេញ។
\left(2x-3\right)\left(4x+3\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា 2x-3 ដោយប្រើលក្ខណៈបំបែក។
8x^{2}-6x-9=0
ពហុធាកាដ្រាទីកអាចត្រូវបានដាក់ជាកត្តាដោយប្រើការបម្លែង ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ដែល x_{1} និង x_{2} គឺជាចម្លើយនៃសមីការរកាដ្រាទីក ax^{2}+bx+c=0។
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 8\left(-9\right)}}{2\times 8}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-\left(-6\right)±\sqrt{36-4\times 8\left(-9\right)}}{2\times 8}
ការ៉េ -6។
x=\frac{-\left(-6\right)±\sqrt{36-32\left(-9\right)}}{2\times 8}
គុណ -4 ដង 8។
x=\frac{-\left(-6\right)±\sqrt{36+288}}{2\times 8}
គុណ -32 ដង -9។
x=\frac{-\left(-6\right)±\sqrt{324}}{2\times 8}
បូក 36 ជាមួយ 288។
x=\frac{-\left(-6\right)±18}{2\times 8}
យកឬសការ៉េនៃ 324។
x=\frac{6±18}{2\times 8}
ភាពផ្ទុយគ្នានៃ -6 គឺ 6។
x=\frac{6±18}{16}
គុណ 2 ដង 8។
x=\frac{24}{16}
ឥឡូវដោះស្រាយសមីការរ x=\frac{6±18}{16} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 6 ជាមួយ 18។
x=\frac{3}{2}
កាត់បន្ថយប្រភាគ \frac{24}{16} ទៅតួដែលតូចបំផុតដោយដក និងលុបចេញ 8។
x=-\frac{12}{16}
ឥឡូវដោះស្រាយសមីការរ x=\frac{6±18}{16} នៅពេល ± គឺជាសញ្ញាដក។ ដក 18 ពី 6។
x=-\frac{3}{4}
កាត់បន្ថយប្រភាគ \frac{-12}{16} ទៅតួដែលតូចបំផុតដោយដក និងលុបចេញ 4។
8x^{2}-6x-9=8\left(x-\frac{3}{2}\right)\left(x-\left(-\frac{3}{4}\right)\right)
ដាក់កន្សោមដើមដាក់ជាកត្តាដោយប្រើ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)។ ជំនួស \frac{3}{2} សម្រាប់ x_{1} និង -\frac{3}{4} សម្រាប់ x_{2}។
8x^{2}-6x-9=8\left(x-\frac{3}{2}\right)\left(x+\frac{3}{4}\right)
សម្រួលកន្សោមទាំងអស់នៃទម្រង់ p-\left(-q\right) ទៅ p+q។
8x^{2}-6x-9=8\times \frac{2x-3}{2}\left(x+\frac{3}{4}\right)
ដក \frac{3}{2} ពី x ដោយការរកភាគបែងរួម ហើយដកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅចំនួនដែលទាបបំផុត បើអាចធ្វើបាន។
8x^{2}-6x-9=8\times \frac{2x-3}{2}\times \frac{4x+3}{4}
បូក \frac{3}{4} ជាមួយ x ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
8x^{2}-6x-9=8\times \frac{\left(2x-3\right)\left(4x+3\right)}{2\times 4}
គុណ \frac{2x-3}{2} ដង \frac{4x+3}{4} ដោយការគុណភាគយកចំនួនដងនៃភាគយក និងភាគបែងចំនួនដងនៃភាគបែង។ បន្ទាប់មកបន្ថយប្រភាគទៅតួទាបបំផុត បើអាចធ្វើបាន។
8x^{2}-6x-9=8\times \frac{\left(2x-3\right)\left(4x+3\right)}{8}
គុណ 2 ដង 4។
8x^{2}-6x-9=\left(2x-3\right)\left(4x+3\right)
សម្រួល 8 ដែលជាកត្តារួមធំបំផុតរវាង 8 និង 8។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}