ដោះស្រាយសម្រាប់ x
x\in (-\infty,\frac{1-\sqrt{6169}}{4}]\cup [\frac{\sqrt{6169}+1}{4},\infty)
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
771-2x^{2}+x\leq 0
ដក 1 ពី 772 ដើម្បីបាន 771។
-771+2x^{2}-x\geq 0
គុណវិសមភាពនឹង -1 ដើម្បីបង្កើតមេគុណនៃស្វ័យគុណខ្ពស់បំផុតនៅក្នុងចំនួនវិជ្ជមាន 771-2x^{2}+x។ ចាប់តាំងពី -1 គឺអវិជ្ជមានទិសដៅវិសមភាពត្រូវបានផ្លាស់ប្តូរ។
-771+2x^{2}-x=0
ដើម្បីដោះស្រាយវិសមភាព ត្រូវដាក់ផ្នែកខាងឆ្វេងដាក់ជាកត្តា។ ពហុធាកាដ្រាទីកអាចត្រូវបានដាក់ជាកត្តាដោយប្រើការបម្លែង ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ដែល x_{1} និង x_{2} គឺជាចម្លើយនៃសមីការរកាដ្រាទីក ax^{2}+bx+c=0។
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 2\left(-771\right)}}{2\times 2}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយប្រើរូបមន្តដឺក្រេទីពីរ៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ ជំនួស 2 សម្រាប់ a, -1 សម្រាប់ b និង -771 សម្រាប់ c នៅក្នុងរូបមន្ដដឺក្រេទីពីរ។
x=\frac{1±\sqrt{6169}}{4}
ធ្វើការគណនា។
x=\frac{\sqrt{6169}+1}{4} x=\frac{1-\sqrt{6169}}{4}
ដោះស្រាយសមីការ x=\frac{1±\sqrt{6169}}{4} នៅពេល ± គឺជាប្រមាណវិធីបូក និងនៅពេល ± គឺជាប្រមាណវិធីដក។
2\left(x-\frac{\sqrt{6169}+1}{4}\right)\left(x-\frac{1-\sqrt{6169}}{4}\right)\geq 0
សរសេរវិសមភាពឡើងវិញដោយប្រើចម្លើយដែលទទួលបាន។
x-\frac{\sqrt{6169}+1}{4}\leq 0 x-\frac{1-\sqrt{6169}}{4}\leq 0
សម្រាប់ផលគុណជា ≥0, x-\frac{\sqrt{6169}+1}{4} និង x-\frac{1-\sqrt{6169}}{4} ត្រូវតែជា ≤0 ទាំងពីរ ឬ ≥0 ទាំងពីរ។ ពិចារណាអំពីករណី នៅពេល x-\frac{\sqrt{6169}+1}{4} និង x-\frac{1-\sqrt{6169}}{4} គឺជា ≤0 ទាំងពីរ។
x\leq \frac{1-\sqrt{6169}}{4}
ចម្លើយដែលផ្ទៀងផ្ទាត់វិសមភាពទាំងពីរគឺ x\leq \frac{1-\sqrt{6169}}{4}។
x-\frac{1-\sqrt{6169}}{4}\geq 0 x-\frac{\sqrt{6169}+1}{4}\geq 0
ពិចារណាអំពីករណី នៅពេល x-\frac{\sqrt{6169}+1}{4} និង x-\frac{1-\sqrt{6169}}{4} គឺជា ≥0 ទាំងពីរ។
x\geq \frac{\sqrt{6169}+1}{4}
ចម្លើយដែលផ្ទៀងផ្ទាត់វិសមភាពទាំងពីរគឺ x\geq \frac{\sqrt{6169}+1}{4}។
x\leq \frac{1-\sqrt{6169}}{4}\text{; }x\geq \frac{\sqrt{6169}+1}{4}
ចម្លើយចុងក្រោយ គឺជាប្រជុំនៃចម្លើយដែលទទួលបាន។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}