ដោះស្រាយសម្រាប់ x, y
x = \frac{49}{29} = 1\frac{20}{29} \approx 1.689655172
y=\frac{19}{29}\approx 0.655172414
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
7x-15y-2=0,x+2y=3
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
7x-15y-2=0
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
7x-15y=2
បូក 2 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
7x=15y+2
បូក 15y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{7}\left(15y+2\right)
ចែកជ្រុងទាំងពីនឹង 7។
x=\frac{15}{7}y+\frac{2}{7}
គុណ \frac{1}{7} ដង 15y+2។
\frac{15}{7}y+\frac{2}{7}+2y=3
ជំនួស \frac{15y+2}{7} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត x+2y=3។
\frac{29}{7}y+\frac{2}{7}=3
បូក \frac{15y}{7} ជាមួយ 2y។
\frac{29}{7}y=\frac{19}{7}
ដក \frac{2}{7} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=\frac{19}{29}
ចែកជ្រុងទាំងពីរនៃសមីការរដោយ \frac{29}{7} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{15}{7}\times \frac{19}{29}+\frac{2}{7}
ជំនួស \frac{19}{29} សម្រាប់ y ក្នុង x=\frac{15}{7}y+\frac{2}{7}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{285}{203}+\frac{2}{7}
គុណ \frac{15}{7} ដង \frac{19}{29} ដោយការគុណភាគយកចំនួនដងនៃភាគយក និងភាគបែងចំនួនដងនៃភាគបែង។ បន្ទាប់មកបន្ថយប្រភាគទៅតួទាបបំផុត បើអាចធ្វើបាន។
x=\frac{49}{29}
បូក \frac{2}{7} ជាមួយ \frac{285}{203} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=\frac{49}{29},y=\frac{19}{29}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
7x-15y-2=0,x+2y=3
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}7&-15\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}7&-15\\1&2\end{matrix}\right))\left(\begin{matrix}7&-15\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-15\\1&2\end{matrix}\right))\left(\begin{matrix}2\\3\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}7&-15\\1&2\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-15\\1&2\end{matrix}\right))\left(\begin{matrix}2\\3\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-15\\1&2\end{matrix}\right))\left(\begin{matrix}2\\3\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7\times 2-\left(-15\right)}&-\frac{-15}{7\times 2-\left(-15\right)}\\-\frac{1}{7\times 2-\left(-15\right)}&\frac{7}{7\times 2-\left(-15\right)}\end{matrix}\right)\left(\begin{matrix}2\\3\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{29}&\frac{15}{29}\\-\frac{1}{29}&\frac{7}{29}\end{matrix}\right)\left(\begin{matrix}2\\3\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{29}\times 2+\frac{15}{29}\times 3\\-\frac{1}{29}\times 2+\frac{7}{29}\times 3\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{49}{29}\\\frac{19}{29}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=\frac{49}{29},y=\frac{19}{29}
ទាញយកធាតុម៉ាទ្រីស x និង y។
7x-15y-2=0,x+2y=3
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
7x-15y-2=0,7x+7\times 2y=7\times 3
ដើម្បីធ្វើឲ្យ 7x និង x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 1 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 7។
7x-15y-2=0,7x+14y=21
ផ្ទៀងផ្ទាត់។
7x-7x-15y-14y-2=-21
ដក 7x+14y=21 ពី 7x-15y-2=0 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-15y-14y-2=-21
បូក 7x ជាមួយ -7x។ ការលុបតួ 7x និង -7x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-29y-2=-21
បូក -15y ជាមួយ -14y។
-29y=-19
បូក 2 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=\frac{19}{29}
ចែកជ្រុងទាំងពីនឹង -29។
x+2\times \frac{19}{29}=3
ជំនួស \frac{19}{29} សម្រាប់ y ក្នុង x+2y=3។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x+\frac{38}{29}=3
គុណ 2 ដង \frac{19}{29}។
x=\frac{49}{29}
ដក \frac{38}{29} ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{49}{29},y=\frac{19}{29}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}