រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x\left(7x+5\right)=0
ដាក់ជាកត្តា x។
x=0 x=-\frac{5}{7}
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ x=0 និង 7x+5=0។
7x^{2}+5x=0
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-5±\sqrt{5^{2}}}{2\times 7}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 7 សម្រាប់ a, 5 សម្រាប់ b និង 0 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-5±5}{2\times 7}
យកឬសការ៉េនៃ 5^{2}។
x=\frac{-5±5}{14}
គុណ 2 ដង 7។
x=\frac{0}{14}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-5±5}{14} នៅពេល ± គឺជាសញ្ញាបូក។ បូក -5 ជាមួយ 5។
x=0
ចែក 0 នឹង 14។
x=-\frac{10}{14}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-5±5}{14} នៅពេល ± គឺជាសញ្ញាដក។ ដក 5 ពី -5។
x=-\frac{5}{7}
កាត់បន្ថយប្រភាគ \frac{-10}{14} ទៅតួដែលតូចបំផុតដោយ​ដក និងលុបចេញ 2។
x=0 x=-\frac{5}{7}
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
7x^{2}+5x=0
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយ​ការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
\frac{7x^{2}+5x}{7}=\frac{0}{7}
ចែកជ្រុងទាំងពីនឹង 7។
x^{2}+\frac{5}{7}x=\frac{0}{7}
ការចែកនឹង 7 មិនធ្វើប្រមាណវិធីគុណនឹង 7 ឡើងវិញ។
x^{2}+\frac{5}{7}x=0
ចែក 0 នឹង 7។
x^{2}+\frac{5}{7}x+\left(\frac{5}{14}\right)^{2}=\left(\frac{5}{14}\right)^{2}
ចែក \frac{5}{7} ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន \frac{5}{14}។ បន្ទាប់មក​បូកការ៉េនៃ \frac{5}{14} ជាមួយ​ជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}+\frac{5}{7}x+\frac{25}{196}=\frac{25}{196}
លើក \frac{5}{14} ជាការ៉េដោយលើកជាការ៉េទាំងភាគយក និងភាគបែងនៃប្រភាគ។
\left(x+\frac{5}{14}\right)^{2}=\frac{25}{196}
ដាក់ជាកត្តា x^{2}+\frac{5}{7}x+\frac{25}{196} ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x+\frac{5}{14}\right)^{2}}=\sqrt{\frac{25}{196}}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x+\frac{5}{14}=\frac{5}{14} x+\frac{5}{14}=-\frac{5}{14}
ផ្ទៀងផ្ទាត់។
x=0 x=-\frac{5}{7}
ដក \frac{5}{14} ពីជ្រុងទាំងពីរនៃសមីការរ។