ដោះស្រាយសម្រាប់ m
m=\frac{2}{7}\approx 0.285714286
m=0
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
m\left(7m-2\right)=0
ដាក់ជាកត្តា m។
m=0 m=\frac{2}{7}
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ m=0 និង 7m-2=0។
7m^{2}-2m=0
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
m=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2\times 7}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 7 សម្រាប់ a, -2 សម្រាប់ b និង 0 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
m=\frac{-\left(-2\right)±2}{2\times 7}
យកឬសការ៉េនៃ \left(-2\right)^{2}។
m=\frac{2±2}{2\times 7}
ភាពផ្ទុយគ្នានៃ -2 គឺ 2។
m=\frac{2±2}{14}
គុណ 2 ដង 7។
m=\frac{4}{14}
ឥឡូវដោះស្រាយសមីការរ m=\frac{2±2}{14} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 2 ជាមួយ 2។
m=\frac{2}{7}
កាត់បន្ថយប្រភាគ \frac{4}{14} ទៅតួដែលតូចបំផុតដោយដក និងលុបចេញ 2។
m=\frac{0}{14}
ឥឡូវដោះស្រាយសមីការរ m=\frac{2±2}{14} នៅពេល ± គឺជាសញ្ញាដក។ ដក 2 ពី 2។
m=0
ចែក 0 នឹង 14។
m=\frac{2}{7} m=0
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
7m^{2}-2m=0
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
\frac{7m^{2}-2m}{7}=\frac{0}{7}
ចែកជ្រុងទាំងពីនឹង 7។
m^{2}-\frac{2}{7}m=\frac{0}{7}
ការចែកនឹង 7 មិនធ្វើប្រមាណវិធីគុណនឹង 7 ឡើងវិញ។
m^{2}-\frac{2}{7}m=0
ចែក 0 នឹង 7។
m^{2}-\frac{2}{7}m+\left(-\frac{1}{7}\right)^{2}=\left(-\frac{1}{7}\right)^{2}
ចែក -\frac{2}{7} ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន -\frac{1}{7}។ បន្ទាប់មកបូកការ៉េនៃ -\frac{1}{7} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
m^{2}-\frac{2}{7}m+\frac{1}{49}=\frac{1}{49}
លើក -\frac{1}{7} ជាការ៉េដោយលើកជាការ៉េទាំងភាគយក និងភាគបែងនៃប្រភាគ។
\left(m-\frac{1}{7}\right)^{2}=\frac{1}{49}
ដាក់ជាកត្តា m^{2}-\frac{2}{7}m+\frac{1}{49} ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(m-\frac{1}{7}\right)^{2}}=\sqrt{\frac{1}{49}}
យកឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
m-\frac{1}{7}=\frac{1}{7} m-\frac{1}{7}=-\frac{1}{7}
ផ្ទៀងផ្ទាត់។
m=\frac{2}{7} m=0
បូក \frac{1}{7} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}