រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

-60+x^{2}-4x<0
គុណវិសមភាពនឹង -1 ដើម្បីបង្កើត​មេគុណនៃស្វ័យគុណខ្ពស់បំផុត​នៅក្នុងចំនួនវិជ្ជមាន 60-x^{2}+4x។ ចាប់តាំងពី -1 គឺអវិជ្ជមានទិសដៅវិសមភាពត្រូវបានផ្លាស់ប្តូរ។
-60+x^{2}-4x=0
ដើម្បីដោះស្រាយវិសមភាព ត្រូវដាក់ផ្នែកខាងឆ្វេងដាក់ជាកត្តា។ ពហុធាកាដ្រាទីកអាចត្រូវបានដាក់ជាកត្តាដោយប្រើការបម្លែង ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ដែល x_{1} និង x_{2} គឺជា​ចម្លើយនៃ​សមីការរកាដ្រាទីក ax^{2}+bx+c=0។
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 1\left(-60\right)}}{2}
គ្រប់សមីការរ​ដែល​មានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយ​ដោយប្រើរូបមន្តដឺក្រេទីពីរ៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ ជំនួស 1 សម្រាប់ a, -4 សម្រាប់ b និង -60 សម្រាប់ c នៅក្នុងរូបមន្ដដឺក្រេទីពីរ។
x=\frac{4±16}{2}
ធ្វើការគណនា។
x=10 x=-6
ដោះស្រាយសមីការ x=\frac{4±16}{2} នៅពេល ± គឺជាប្រមាណវិធីបូក និងនៅពេល ± គឺជាប្រមាណវិធីដក។
\left(x-10\right)\left(x+6\right)<0
សរសេរវិសមភាពឡើងវិញដោយប្រើ​ចម្លើយដែលទទួលបាន។
x-10>0 x+6<0
សម្រាប់ផលគុណជាអវិជ្ជមាន x-10 និង x+6 ត្រូវតែ​ជាសញ្ញា​ផ្ទុយគ្នា។ ពិចារណា​ករណី​ដែល​ x-10 ជាចំនួនអវិជ្ជមាន និង x+6 ជាចំនួនអវិជ្ជមាន។
x\in \emptyset
នេះគឺជាមិនពិត​សម្រាប់ x ណាមួយ។
x+6>0 x-10<0
ពិចារណា​ករណី​ដែល​ x+6 ជាចំនួនអវិជ្ជមាន និង x-10 ជាចំនួនអវិជ្ជមាន។
x\in \left(-6,10\right)
ចម្លើយដែលផ្ទៀងផ្ទាត់​វិសមភាពទាំងពីរគឺ x\in \left(-6,10\right)។
x\in \left(-6,10\right)
ចម្លើយចុងក្រោយ គឺជាប្រជុំនៃចម្លើយដែលទទួលបាន។