ដាក់ជាកត្តា
y\left(6x-5\right)\left(x+2\right)
វាយតម្លៃ
y\left(6x-5\right)\left(x+2\right)
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
y\left(6x^{2}+7x-10\right)
ដាក់ជាកត្តា y។
a+b=7 ab=6\left(-10\right)=-60
ពិនិត្យ 6x^{2}+7x-10។ ដាក់ជាកត្តានូវកន្សោមដោយដាក់ជាក្រុម។ ដំបូង កន្សោមត្រូវតែសរសេរឡើងវិញជា 6x^{2}+ax+bx-10។ ដើម្បីរក a និង b សូមបង្កើតប្រព័ន្ធដែលត្រូវដោះស្រាយ។
-1,60 -2,30 -3,20 -4,15 -5,12 -6,10
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនវិជ្ជមាន ចំនួនវិជ្ជមានមានតម្លៃដាច់ខាតធំជាងចំនួនអវិជ្ជមាន។ រាយឈ្មោះគូទាំងអស់ដែលផ្ដល់នូវផលគុណ -60។
-1+60=59 -2+30=28 -3+20=17 -4+15=11 -5+12=7 -6+10=4
គណនីផលបូកសម្រាប់គូនីមួយៗ។
a=-5 b=12
ចម្លើយគឺជាគូ ដែលផ្ដល់នូវផលបូក 7 ។
\left(6x^{2}-5x\right)+\left(12x-10\right)
សរសេរ 6x^{2}+7x-10 ឡើងវិញជា \left(6x^{2}-5x\right)+\left(12x-10\right)។
x\left(6x-5\right)+2\left(6x-5\right)
ដាក់ជាកត្តា x នៅក្នុងក្រុមទីមួយ និង 2 ក្រុមទីពីរចេញ។
\left(6x-5\right)\left(x+2\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា 6x-5 ដោយប្រើលក្ខណៈបំបែក។
y\left(6x-5\right)\left(x+2\right)
សរសេរកន្សោមដែលបានដាក់ជាកត្តាពេញលេញឡើងវិញ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}