ដោះស្រាយសម្រាប់ x
x=-\frac{2}{3}\approx -0.666666667
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
a+b=-5 ab=6\left(-6\right)=-36
ដើម្បីដោះស្រាយសមីការ សូមដាក់ផ្នែកខាងឆ្វេងដាក់ជាកត្តាដោយការដាក់ជាក្រុម។ ដំបូង ផ្នែកខាងឆ្វេងត្រូវតែសរសេរឡើងវិញជា 6x^{2}+ax+bx-6។ ដើម្បីរក a និង b សូមបង្កើតប្រព័ន្ធដែលត្រូវដោះស្រាយ។
1,-36 2,-18 3,-12 4,-9 6,-6
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន ចំនួនអវិជ្ជមានមានតម្លៃដាច់ខាតធំជាងចំនួនវិជ្ជមាន។ រាយឈ្មោះគូទាំងអស់ដែលផ្ដល់នូវផលគុណ -36។
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
គណនីផលបូកសម្រាប់គូនីមួយៗ។
a=-9 b=4
ចម្លើយគឺជាគូ ដែលផ្ដល់នូវផលបូក -5 ។
\left(6x^{2}-9x\right)+\left(4x-6\right)
សរសេរ 6x^{2}-5x-6 ឡើងវិញជា \left(6x^{2}-9x\right)+\left(4x-6\right)។
3x\left(2x-3\right)+2\left(2x-3\right)
ដាក់ជាកត្តា 3x នៅក្នុងក្រុមទីមួយ និង 2 ក្រុមទីពីរចេញ។
\left(2x-3\right)\left(3x+2\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា 2x-3 ដោយប្រើលក្ខណៈបំបែក។
x=\frac{3}{2} x=-\frac{2}{3}
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ 2x-3=0 និង 3x+2=0។
6x^{2}-5x-6=0
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 6\left(-6\right)}}{2\times 6}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 6 សម្រាប់ a, -5 សម្រាប់ b និង -6 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-\left(-5\right)±\sqrt{25-4\times 6\left(-6\right)}}{2\times 6}
ការ៉េ -5។
x=\frac{-\left(-5\right)±\sqrt{25-24\left(-6\right)}}{2\times 6}
គុណ -4 ដង 6។
x=\frac{-\left(-5\right)±\sqrt{25+144}}{2\times 6}
គុណ -24 ដង -6។
x=\frac{-\left(-5\right)±\sqrt{169}}{2\times 6}
បូក 25 ជាមួយ 144។
x=\frac{-\left(-5\right)±13}{2\times 6}
យកឬសការ៉េនៃ 169។
x=\frac{5±13}{2\times 6}
ភាពផ្ទុយគ្នានៃ -5 គឺ 5។
x=\frac{5±13}{12}
គុណ 2 ដង 6។
x=\frac{18}{12}
ឥឡូវដោះស្រាយសមីការរ x=\frac{5±13}{12} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 5 ជាមួយ 13។
x=\frac{3}{2}
កាត់បន្ថយប្រភាគ \frac{18}{12} ទៅតួដែលតូចបំផុតដោយដក និងលុបចេញ 6។
x=-\frac{8}{12}
ឥឡូវដោះស្រាយសមីការរ x=\frac{5±13}{12} នៅពេល ± គឺជាសញ្ញាដក។ ដក 13 ពី 5។
x=-\frac{2}{3}
កាត់បន្ថយប្រភាគ \frac{-8}{12} ទៅតួដែលតូចបំផុតដោយដក និងលុបចេញ 4។
x=\frac{3}{2} x=-\frac{2}{3}
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
6x^{2}-5x-6=0
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
6x^{2}-5x-6-\left(-6\right)=-\left(-6\right)
បូក 6 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
6x^{2}-5x=-\left(-6\right)
ការដក -6 ពីខ្លួនឯងនៅសល់ 0។
6x^{2}-5x=6
ដក -6 ពី 0។
\frac{6x^{2}-5x}{6}=\frac{6}{6}
ចែកជ្រុងទាំងពីនឹង 6។
x^{2}-\frac{5}{6}x=\frac{6}{6}
ការចែកនឹង 6 មិនធ្វើប្រមាណវិធីគុណនឹង 6 ឡើងវិញ។
x^{2}-\frac{5}{6}x=1
ចែក 6 នឹង 6។
x^{2}-\frac{5}{6}x+\left(-\frac{5}{12}\right)^{2}=1+\left(-\frac{5}{12}\right)^{2}
ចែក -\frac{5}{6} ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន -\frac{5}{12}។ បន្ទាប់មកបូកការ៉េនៃ -\frac{5}{12} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}-\frac{5}{6}x+\frac{25}{144}=1+\frac{25}{144}
លើក -\frac{5}{12} ជាការ៉េដោយលើកជាការ៉េទាំងភាគយក និងភាគបែងនៃប្រភាគ។
x^{2}-\frac{5}{6}x+\frac{25}{144}=\frac{169}{144}
បូក 1 ជាមួយ \frac{25}{144}។
\left(x-\frac{5}{12}\right)^{2}=\frac{169}{144}
ដាក់ជាកត្តា x^{2}-\frac{5}{6}x+\frac{25}{144} ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x-\frac{5}{12}\right)^{2}}=\sqrt{\frac{169}{144}}
យកឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x-\frac{5}{12}=\frac{13}{12} x-\frac{5}{12}=-\frac{13}{12}
ផ្ទៀងផ្ទាត់។
x=\frac{3}{2} x=-\frac{2}{3}
បូក \frac{5}{12} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}