ដាក់ជាកត្តា
3\left(2x-3\right)\left(x+3\right)
វាយតម្លៃ
3\left(2x-3\right)\left(x+3\right)
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
3\left(2x^{2}+3x-9\right)
ដាក់ជាកត្តា 3។
a+b=3 ab=2\left(-9\right)=-18
ពិនិត្យ 2x^{2}+3x-9។ ដាក់ជាកត្តានូវកន្សោមដោយដាក់ជាក្រុម។ ដំបូង កន្សោមត្រូវតែសរសេរឡើងវិញជា 2x^{2}+ax+bx-9។ ដើម្បីរក a និង b សូមបង្កើតប្រព័ន្ធដែលត្រូវដោះស្រាយ។
-1,18 -2,9 -3,6
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនវិជ្ជមាន ចំនួនវិជ្ជមានមានតម្លៃដាច់ខាតធំជាងចំនួនអវិជ្ជមាន។ រាយឈ្មោះគូទាំងអស់ដែលផ្ដល់នូវផលគុណ -18។
-1+18=17 -2+9=7 -3+6=3
គណនីផលបូកសម្រាប់គូនីមួយៗ។
a=-3 b=6
ចម្លើយគឺជាគូ ដែលផ្ដល់នូវផលបូក 3 ។
\left(2x^{2}-3x\right)+\left(6x-9\right)
សរសេរ 2x^{2}+3x-9 ឡើងវិញជា \left(2x^{2}-3x\right)+\left(6x-9\right)។
x\left(2x-3\right)+3\left(2x-3\right)
ដាក់ជាកត្តា x នៅក្នុងក្រុមទីមួយ និង 3 ក្រុមទីពីរចេញ។
\left(2x-3\right)\left(x+3\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា 2x-3 ដោយប្រើលក្ខណៈបំបែក។
3\left(2x-3\right)\left(x+3\right)
សរសេរកន្សោមដែលបានដាក់ជាកត្តាពេញលេញឡើងវិញ។
6x^{2}+9x-27=0
ពហុធាកាដ្រាទីកអាចត្រូវបានដាក់ជាកត្តាដោយប្រើការបម្លែង ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ដែល x_{1} និង x_{2} គឺជាចម្លើយនៃសមីការរកាដ្រាទីក ax^{2}+bx+c=0។
x=\frac{-9±\sqrt{9^{2}-4\times 6\left(-27\right)}}{2\times 6}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-9±\sqrt{81-4\times 6\left(-27\right)}}{2\times 6}
ការ៉េ 9។
x=\frac{-9±\sqrt{81-24\left(-27\right)}}{2\times 6}
គុណ -4 ដង 6។
x=\frac{-9±\sqrt{81+648}}{2\times 6}
គុណ -24 ដង -27។
x=\frac{-9±\sqrt{729}}{2\times 6}
បូក 81 ជាមួយ 648។
x=\frac{-9±27}{2\times 6}
យកឬសការ៉េនៃ 729។
x=\frac{-9±27}{12}
គុណ 2 ដង 6។
x=\frac{18}{12}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-9±27}{12} នៅពេល ± គឺជាសញ្ញាបូក។ បូក -9 ជាមួយ 27។
x=\frac{3}{2}
កាត់បន្ថយប្រភាគ \frac{18}{12} ទៅតួដែលតូចបំផុតដោយដក និងលុបចេញ 6។
x=-\frac{36}{12}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-9±27}{12} នៅពេល ± គឺជាសញ្ញាដក។ ដក 27 ពី -9។
x=-3
ចែក -36 នឹង 12។
6x^{2}+9x-27=6\left(x-\frac{3}{2}\right)\left(x-\left(-3\right)\right)
ដាក់កន្សោមដើមដាក់ជាកត្តាដោយប្រើ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)។ ជំនួស \frac{3}{2} សម្រាប់ x_{1} និង -3 សម្រាប់ x_{2}។
6x^{2}+9x-27=6\left(x-\frac{3}{2}\right)\left(x+3\right)
សម្រួលកន្សោមទាំងអស់នៃទម្រង់ p-\left(-q\right) ទៅ p+q។
6x^{2}+9x-27=6\times \frac{2x-3}{2}\left(x+3\right)
ដក \frac{3}{2} ពី x ដោយការរកភាគបែងរួម ហើយដកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅចំនួនដែលទាបបំផុត បើអាចធ្វើបាន។
6x^{2}+9x-27=3\left(2x-3\right)\left(x+3\right)
សម្រួល 2 ដែលជាកត្តារួមធំបំផុតរវាង 6 និង 2។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}