រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

6x^{2}+5x-6=0
ដក 6 ពីជ្រុងទាំងពីរ។
a+b=5 ab=6\left(-6\right)=-36
ដើម្បីដោះស្រាយ​សមីការ សូមដាក់ផ្នែកខាងឆ្វេង​ដាក់ជាកត្តា​ដោយការដាក់ជាក្រុម។ ដំបូង ផ្នែកខាងឆ្វេងត្រូវតែសរសេរឡើងវិញជា 6x^{2}+ax+bx-6។ ដើម្បីរក a និង b សូមបង្កើត​ប្រព័ន្ធដែល​ត្រូវដោះស្រាយ។
-1,36 -2,18 -3,12 -4,9 -6,6
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនវិជ្ជមាន ចំនួនវិជ្ជមានមានតម្លៃដាច់ខាតធំជាង​ចំនួនអវិជ្ជមាន។ រាយ​ឈ្មោះគូ​ទាំងអស់ដែល​ផ្ដល់នូវផលគុណ -36។
-1+36=35 -2+18=16 -3+12=9 -4+9=5 -6+6=0
គណនី​ផល​បូកសម្រាប់គូនីមួយៗ។
a=-4 b=9
ចម្លើយគឺជា​គូ ដែលផ្ដល់​នូវផលបូក 5 ។
\left(6x^{2}-4x\right)+\left(9x-6\right)
សរសេរ 6x^{2}+5x-6 ឡើងវិញជា \left(6x^{2}-4x\right)+\left(9x-6\right)។
2x\left(3x-2\right)+3\left(3x-2\right)
ដាក់ជាកត្តា 2x នៅក្នុងក្រុមទីមួយ និង 3 ក្រុមទីពីរចេញ។
\left(3x-2\right)\left(2x+3\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា 3x-2 ដោយប្រើលក្ខណៈបំបែក។
x=\frac{2}{3} x=-\frac{3}{2}
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ 3x-2=0 និង 2x+3=0។
6x^{2}+5x=6
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
6x^{2}+5x-6=6-6
ដក 6 ពីជ្រុងទាំងពីរនៃសមីការរ។
6x^{2}+5x-6=0
ការដក 6 ពីខ្លួនឯងនៅសល់ 0។
x=\frac{-5±\sqrt{5^{2}-4\times 6\left(-6\right)}}{2\times 6}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 6 សម្រាប់ a, 5 សម្រាប់ b និង -6 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-5±\sqrt{25-4\times 6\left(-6\right)}}{2\times 6}
ការ៉េ 5។
x=\frac{-5±\sqrt{25-24\left(-6\right)}}{2\times 6}
គុណ -4 ដង 6។
x=\frac{-5±\sqrt{25+144}}{2\times 6}
គុណ -24 ដង -6។
x=\frac{-5±\sqrt{169}}{2\times 6}
បូក 25 ជាមួយ 144។
x=\frac{-5±13}{2\times 6}
យកឬសការ៉េនៃ 169។
x=\frac{-5±13}{12}
គុណ 2 ដង 6។
x=\frac{8}{12}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-5±13}{12} នៅពេល ± គឺជាសញ្ញាបូក។ បូក -5 ជាមួយ 13។
x=\frac{2}{3}
កាត់បន្ថយប្រភាគ \frac{8}{12} ទៅតួដែលតូចបំផុតដោយ​ដក និងលុបចេញ 4។
x=-\frac{18}{12}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-5±13}{12} នៅពេល ± គឺជាសញ្ញាដក។ ដក 13 ពី -5។
x=-\frac{3}{2}
កាត់បន្ថយប្រភាគ \frac{-18}{12} ទៅតួដែលតូចបំផុតដោយ​ដក និងលុបចេញ 6។
x=\frac{2}{3} x=-\frac{3}{2}
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
6x^{2}+5x=6
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយ​ការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
\frac{6x^{2}+5x}{6}=\frac{6}{6}
ចែកជ្រុងទាំងពីនឹង 6។
x^{2}+\frac{5}{6}x=\frac{6}{6}
ការចែកនឹង 6 មិនធ្វើប្រមាណវិធីគុណនឹង 6 ឡើងវិញ។
x^{2}+\frac{5}{6}x=1
ចែក 6 នឹង 6។
x^{2}+\frac{5}{6}x+\left(\frac{5}{12}\right)^{2}=1+\left(\frac{5}{12}\right)^{2}
ចែក \frac{5}{6} ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន \frac{5}{12}។ បន្ទាប់មក​បូកការ៉េនៃ \frac{5}{12} ជាមួយ​ជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}+\frac{5}{6}x+\frac{25}{144}=1+\frac{25}{144}
លើក \frac{5}{12} ជាការ៉េដោយលើកជាការ៉េទាំងភាគយក និងភាគបែងនៃប្រភាគ។
x^{2}+\frac{5}{6}x+\frac{25}{144}=\frac{169}{144}
បូក 1 ជាមួយ \frac{25}{144}។
\left(x+\frac{5}{12}\right)^{2}=\frac{169}{144}
ដាក់ជាកត្តា x^{2}+\frac{5}{6}x+\frac{25}{144} ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x+\frac{5}{12}\right)^{2}}=\sqrt{\frac{169}{144}}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x+\frac{5}{12}=\frac{13}{12} x+\frac{5}{12}=-\frac{13}{12}
ផ្ទៀងផ្ទាត់។
x=\frac{2}{3} x=-\frac{3}{2}
ដក \frac{5}{12} ពីជ្រុងទាំងពីរនៃសមីការរ។