រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x\left(6x+30\right)=0
ដាក់ជាកត្តា x។
x=0 x=-5
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ x=0 និង 6x+30=0។
6x^{2}+30x=0
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-30±\sqrt{30^{2}}}{2\times 6}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 6 សម្រាប់ a, 30 សម្រាប់ b និង 0 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-30±30}{2\times 6}
យកឬសការ៉េនៃ 30^{2}។
x=\frac{-30±30}{12}
គុណ 2 ដង 6។
x=\frac{0}{12}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-30±30}{12} នៅពេល ± គឺជាសញ្ញាបូក។ បូក -30 ជាមួយ 30។
x=0
ចែក 0 នឹង 12។
x=-\frac{60}{12}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-30±30}{12} នៅពេល ± គឺជាសញ្ញាដក។ ដក 30 ពី -30។
x=-5
ចែក -60 នឹង 12។
x=0 x=-5
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
6x^{2}+30x=0
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយ​ការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
\frac{6x^{2}+30x}{6}=\frac{0}{6}
ចែកជ្រុងទាំងពីនឹង 6។
x^{2}+\frac{30}{6}x=\frac{0}{6}
ការចែកនឹង 6 មិនធ្វើប្រមាណវិធីគុណនឹង 6 ឡើងវិញ។
x^{2}+5x=\frac{0}{6}
ចែក 30 នឹង 6។
x^{2}+5x=0
ចែក 0 នឹង 6។
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=\left(\frac{5}{2}\right)^{2}
ចែក 5 ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន \frac{5}{2}។ បន្ទាប់មក​បូកការ៉េនៃ \frac{5}{2} ជាមួយ​ជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}+5x+\frac{25}{4}=\frac{25}{4}
លើក \frac{5}{2} ជាការ៉េដោយលើកជាការ៉េទាំងភាគយក និងភាគបែងនៃប្រភាគ។
\left(x+\frac{5}{2}\right)^{2}=\frac{25}{4}
ដាក់ជាកត្តា x^{2}+5x+\frac{25}{4} ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x+\frac{5}{2}=\frac{5}{2} x+\frac{5}{2}=-\frac{5}{2}
ផ្ទៀងផ្ទាត់។
x=0 x=-5
ដក \frac{5}{2} ពីជ្រុងទាំងពីរនៃសមីការរ។