ដោះស្រាយសម្រាប់ x
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
a+b=7 ab=6\left(-20\right)=-120
ដើម្បីដោះស្រាយសមីការ សូមដាក់ផ្នែកខាងឆ្វេងដាក់ជាកត្តាដោយការដាក់ជាក្រុម។ ដំបូង ផ្នែកខាងឆ្វេងត្រូវតែសរសេរឡើងវិញជា 6x^{2}+ax+bx-20។ ដើម្បីរក a និង b សូមបង្កើតប្រព័ន្ធដែលត្រូវដោះស្រាយ។
-1,120 -2,60 -3,40 -4,30 -5,24 -6,20 -8,15 -10,12
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនវិជ្ជមាន ចំនួនវិជ្ជមានមានតម្លៃដាច់ខាតធំជាងចំនួនអវិជ្ជមាន។ រាយឈ្មោះគូទាំងអស់ដែលផ្ដល់នូវផលគុណ -120។
-1+120=119 -2+60=58 -3+40=37 -4+30=26 -5+24=19 -6+20=14 -8+15=7 -10+12=2
គណនីផលបូកសម្រាប់គូនីមួយៗ។
a=-8 b=15
ចម្លើយគឺជាគូ ដែលផ្ដល់នូវផលបូក 7 ។
\left(6x^{2}-8x\right)+\left(15x-20\right)
សរសេរ 6x^{2}+7x-20 ឡើងវិញជា \left(6x^{2}-8x\right)+\left(15x-20\right)។
2x\left(3x-4\right)+5\left(3x-4\right)
ដាក់ជាកត្តា 2x នៅក្នុងក្រុមទីមួយ និង 5 ក្រុមទីពីរចេញ។
\left(3x-4\right)\left(2x+5\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា 3x-4 ដោយប្រើលក្ខណៈបំបែក។
x=\frac{4}{3} x=-\frac{5}{2}
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ 3x-4=0 និង 2x+5=0។
6x^{2}+7x-20=0
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-7±\sqrt{7^{2}-4\times 6\left(-20\right)}}{2\times 6}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 6 សម្រាប់ a, 7 សម្រាប់ b និង -20 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-7±\sqrt{49-4\times 6\left(-20\right)}}{2\times 6}
ការ៉េ 7។
x=\frac{-7±\sqrt{49-24\left(-20\right)}}{2\times 6}
គុណ -4 ដង 6។
x=\frac{-7±\sqrt{49+480}}{2\times 6}
គុណ -24 ដង -20។
x=\frac{-7±\sqrt{529}}{2\times 6}
បូក 49 ជាមួយ 480។
x=\frac{-7±23}{2\times 6}
យកឬសការ៉េនៃ 529។
x=\frac{-7±23}{12}
គុណ 2 ដង 6។
x=\frac{16}{12}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-7±23}{12} នៅពេល ± គឺជាសញ្ញាបូក។ បូក -7 ជាមួយ 23។
x=\frac{4}{3}
កាត់បន្ថយប្រភាគ \frac{16}{12} ទៅតួដែលតូចបំផុតដោយដក និងលុបចេញ 4។
x=-\frac{30}{12}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-7±23}{12} នៅពេល ± គឺជាសញ្ញាដក។ ដក 23 ពី -7។
x=-\frac{5}{2}
កាត់បន្ថយប្រភាគ \frac{-30}{12} ទៅតួដែលតូចបំផុតដោយដក និងលុបចេញ 6។
x=\frac{4}{3} x=-\frac{5}{2}
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
6x^{2}+7x-20=0
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
6x^{2}+7x-20-\left(-20\right)=-\left(-20\right)
បូក 20 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
6x^{2}+7x=-\left(-20\right)
ការដក -20 ពីខ្លួនឯងនៅសល់ 0។
6x^{2}+7x=20
ដក -20 ពី 0។
\frac{6x^{2}+7x}{6}=\frac{20}{6}
ចែកជ្រុងទាំងពីនឹង 6។
x^{2}+\frac{7}{6}x=\frac{20}{6}
ការចែកនឹង 6 មិនធ្វើប្រមាណវិធីគុណនឹង 6 ឡើងវិញ។
x^{2}+\frac{7}{6}x=\frac{10}{3}
កាត់បន្ថយប្រភាគ \frac{20}{6} ទៅតួដែលតូចបំផុតដោយដក និងលុបចេញ 2។
x^{2}+\frac{7}{6}x+\left(\frac{7}{12}\right)^{2}=\frac{10}{3}+\left(\frac{7}{12}\right)^{2}
ចែក \frac{7}{6} ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន \frac{7}{12}។ បន្ទាប់មកបូកការ៉េនៃ \frac{7}{12} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{10}{3}+\frac{49}{144}
លើក \frac{7}{12} ជាការ៉េដោយលើកជាការ៉េទាំងភាគយក និងភាគបែងនៃប្រភាគ។
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{529}{144}
បូក \frac{10}{3} ជាមួយ \frac{49}{144} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
\left(x+\frac{7}{12}\right)^{2}=\frac{529}{144}
ដាក់ជាកត្តា x^{2}+\frac{7}{6}x+\frac{49}{144} ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x+\frac{7}{12}\right)^{2}}=\sqrt{\frac{529}{144}}
យកឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x+\frac{7}{12}=\frac{23}{12} x+\frac{7}{12}=-\frac{23}{12}
ផ្ទៀងផ្ទាត់។
x=\frac{4}{3} x=-\frac{5}{2}
ដក \frac{7}{12} ពីជ្រុងទាំងពីរនៃសមីការរ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}