រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x (complex solution)
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

5x^{2}-7x+3=0
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 5\times 3}}{2\times 5}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 5 សម្រាប់ a, -7 សម្រាប់ b និង 3 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-\left(-7\right)±\sqrt{49-4\times 5\times 3}}{2\times 5}
ការ៉េ -7។
x=\frac{-\left(-7\right)±\sqrt{49-20\times 3}}{2\times 5}
គុណ -4 ដង 5។
x=\frac{-\left(-7\right)±\sqrt{49-60}}{2\times 5}
គុណ -20 ដង 3។
x=\frac{-\left(-7\right)±\sqrt{-11}}{2\times 5}
បូក 49 ជាមួយ -60។
x=\frac{-\left(-7\right)±\sqrt{11}i}{2\times 5}
យកឬសការ៉េនៃ -11។
x=\frac{7±\sqrt{11}i}{2\times 5}
ភាពផ្ទុយគ្នានៃ -7 គឺ 7។
x=\frac{7±\sqrt{11}i}{10}
គុណ 2 ដង 5។
x=\frac{7+\sqrt{11}i}{10}
ឥឡូវដោះស្រាយសមីការរ x=\frac{7±\sqrt{11}i}{10} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 7 ជាមួយ i\sqrt{11}។
x=\frac{-\sqrt{11}i+7}{10}
ឥឡូវដោះស្រាយសមីការរ x=\frac{7±\sqrt{11}i}{10} នៅពេល ± គឺជាសញ្ញាដក។ ដក i\sqrt{11} ពី 7។
x=\frac{7+\sqrt{11}i}{10} x=\frac{-\sqrt{11}i+7}{10}
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
5x^{2}-7x+3=0
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយ​ការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
5x^{2}-7x+3-3=-3
ដក 3 ពីជ្រុងទាំងពីរនៃសមីការរ។
5x^{2}-7x=-3
ការដក 3 ពីខ្លួនឯងនៅសល់ 0។
\frac{5x^{2}-7x}{5}=-\frac{3}{5}
ចែកជ្រុងទាំងពីនឹង 5។
x^{2}-\frac{7}{5}x=-\frac{3}{5}
ការចែកនឹង 5 មិនធ្វើប្រមាណវិធីគុណនឹង 5 ឡើងវិញ។
x^{2}-\frac{7}{5}x+\left(-\frac{7}{10}\right)^{2}=-\frac{3}{5}+\left(-\frac{7}{10}\right)^{2}
ចែក -\frac{7}{5} ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន -\frac{7}{10}។ បន្ទាប់មក​បូកការ៉េនៃ -\frac{7}{10} ជាមួយ​ជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}-\frac{7}{5}x+\frac{49}{100}=-\frac{3}{5}+\frac{49}{100}
លើក -\frac{7}{10} ជាការ៉េដោយលើកជាការ៉េទាំងភាគយក និងភាគបែងនៃប្រភាគ។
x^{2}-\frac{7}{5}x+\frac{49}{100}=-\frac{11}{100}
បូក -\frac{3}{5} ជាមួយ \frac{49}{100} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
\left(x-\frac{7}{10}\right)^{2}=-\frac{11}{100}
ដាក់ជាកត្តា x^{2}-\frac{7}{5}x+\frac{49}{100} ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x-\frac{7}{10}\right)^{2}}=\sqrt{-\frac{11}{100}}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x-\frac{7}{10}=\frac{\sqrt{11}i}{10} x-\frac{7}{10}=-\frac{\sqrt{11}i}{10}
ផ្ទៀងផ្ទាត់។
x=\frac{7+\sqrt{11}i}{10} x=\frac{-\sqrt{11}i+7}{10}
បូក \frac{7}{10} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។