រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x (complex solution)
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

5x^{2}+4x=-2
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
5x^{2}+4x-\left(-2\right)=-2-\left(-2\right)
បូក 2 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
5x^{2}+4x-\left(-2\right)=0
ការដក -2 ពីខ្លួនឯងនៅសល់ 0។
5x^{2}+4x+2=0
ដក -2 ពី 0។
x=\frac{-4±\sqrt{4^{2}-4\times 5\times 2}}{2\times 5}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 5 សម្រាប់ a, 4 សម្រាប់ b និង 2 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-4±\sqrt{16-4\times 5\times 2}}{2\times 5}
ការ៉េ 4។
x=\frac{-4±\sqrt{16-20\times 2}}{2\times 5}
គុណ -4 ដង 5។
x=\frac{-4±\sqrt{16-40}}{2\times 5}
គុណ -20 ដង 2។
x=\frac{-4±\sqrt{-24}}{2\times 5}
បូក 16 ជាមួយ -40។
x=\frac{-4±2\sqrt{6}i}{2\times 5}
យកឬសការ៉េនៃ -24។
x=\frac{-4±2\sqrt{6}i}{10}
គុណ 2 ដង 5។
x=\frac{-4+2\sqrt{6}i}{10}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-4±2\sqrt{6}i}{10} នៅពេល ± គឺជាសញ្ញាបូក។ បូក -4 ជាមួយ 2i\sqrt{6}។
x=\frac{-2+\sqrt{6}i}{5}
ចែក -4+2i\sqrt{6} នឹង 10។
x=\frac{-2\sqrt{6}i-4}{10}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-4±2\sqrt{6}i}{10} នៅពេល ± គឺជាសញ្ញាដក។ ដក 2i\sqrt{6} ពី -4។
x=\frac{-\sqrt{6}i-2}{5}
ចែក -4-2i\sqrt{6} នឹង 10។
x=\frac{-2+\sqrt{6}i}{5} x=\frac{-\sqrt{6}i-2}{5}
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
5x^{2}+4x=-2
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយ​ការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
\frac{5x^{2}+4x}{5}=-\frac{2}{5}
ចែកជ្រុងទាំងពីនឹង 5។
x^{2}+\frac{4}{5}x=-\frac{2}{5}
ការចែកនឹង 5 មិនធ្វើប្រមាណវិធីគុណនឹង 5 ឡើងវិញ។
x^{2}+\frac{4}{5}x+\left(\frac{2}{5}\right)^{2}=-\frac{2}{5}+\left(\frac{2}{5}\right)^{2}
ចែក \frac{4}{5} ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន \frac{2}{5}។ បន្ទាប់មក​បូកការ៉េនៃ \frac{2}{5} ជាមួយ​ជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}+\frac{4}{5}x+\frac{4}{25}=-\frac{2}{5}+\frac{4}{25}
លើក \frac{2}{5} ជាការ៉េដោយលើកជាការ៉េទាំងភាគយក និងភាគបែងនៃប្រភាគ។
x^{2}+\frac{4}{5}x+\frac{4}{25}=-\frac{6}{25}
បូក -\frac{2}{5} ជាមួយ \frac{4}{25} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
\left(x+\frac{2}{5}\right)^{2}=-\frac{6}{25}
ដាក់ជាកត្តា x^{2}+\frac{4}{5}x+\frac{4}{25} ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x+\frac{2}{5}\right)^{2}}=\sqrt{-\frac{6}{25}}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x+\frac{2}{5}=\frac{\sqrt{6}i}{5} x+\frac{2}{5}=-\frac{\sqrt{6}i}{5}
ផ្ទៀងផ្ទាត់។
x=\frac{-2+\sqrt{6}i}{5} x=\frac{-\sqrt{6}i-2}{5}
ដក \frac{2}{5} ពីជ្រុងទាំងពីរនៃសមីការរ។