ដោះស្រាយសម្រាប់ y
y=2
y = \frac{7}{4} = 1\frac{3}{4} = 1.75
y=-2
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
4y^{3}-7y^{2}-16y+28=0
តម្រៀបសមីការសារឡើងវិញដើម្បីដាក់វានៅក្នុងទម្រង់ស្ដង់ដារ។ ដាក់តួតាមលំដាប់ពីស្វ័យគុណខ្ពស់បំផុតទៅទាបបំផុត។
±7,±14,±28,±\frac{7}{2},±\frac{7}{4},±1,±2,±4,±\frac{1}{2},±\frac{1}{4}
តាមទ្រឹស្ដីបទឬសសនិទាន គ្រប់ឬសសនិទានទាំងអស់នៃពហុធាគឺមានទម្រង់ \frac{p}{q} ដែល p ចែកតួថេរ 28 ហើយ q ចែកមេគុណនាំមុខ 4។ រាយឈ្មោះបេក្ខជនទាំងអស់ \frac{p}{q}។
y=2
រកឫសគល់បែបនេះដោយសាកល្បងតម្លៃចំនួនគត់ទាំងអស់ដោយចាប់ផ្តើមពីតូចបំផុតដោយតម្លៃដាច់ខាត។ ប្រសិនបើរកមិនឃើញឫសចំនួនគត់សូមសាកល្បងប្រភាគ។
4y^{2}+y-14=0
ទ្រឹស្ដីបទនៃផលគុណកត្តា y-k គឺជាកត្តានៃពហុធាសម្រាប់ k ឬសនីមួយៗ។ ចែក 4y^{3}-7y^{2}-16y+28 នឹង y-2 ដើម្បីបាន4y^{2}+y-14។ ដោះស្រាយសមីការដែលលទ្ធផលស្មើ 0។
y=\frac{-1±\sqrt{1^{2}-4\times 4\left(-14\right)}}{2\times 4}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយប្រើរូបមន្តដឺក្រេទីពីរ៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ ជំនួស 4 សម្រាប់ a, 1 សម្រាប់ b និង -14 សម្រាប់ c នៅក្នុងរូបមន្ដដឺក្រេទីពីរ។
y=\frac{-1±15}{8}
ធ្វើការគណនា។
y=-2 y=\frac{7}{4}
ដោះស្រាយសមីការ 4y^{2}+y-14=0 នៅពេល ± គឺជាប្រមាណវិធីបូក និងនៅពេល ± គឺជាប្រមាណវិធីដក។
y=2 y=-2 y=\frac{7}{4}
រាយដំណោះស្រាយដែលបានរកឃើញទាំងអស់។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}