រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

4x-y=5,-4x+5y=7
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
4x-y=5
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
4x=y+5
បូក y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{4}\left(y+5\right)
ចែកជ្រុងទាំងពីនឹង 4។
x=\frac{1}{4}y+\frac{5}{4}
គុណ \frac{1}{4} ដង y+5។
-4\left(\frac{1}{4}y+\frac{5}{4}\right)+5y=7
ជំនួស \frac{5+y}{4} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត -4x+5y=7។
-y-5+5y=7
គុណ -4 ដង \frac{5+y}{4}។
4y-5=7
បូក -y ជាមួយ 5y។
4y=12
បូក 5 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=3
ចែកជ្រុងទាំងពីនឹង 4។
x=\frac{1}{4}\times 3+\frac{5}{4}
ជំនួស 3 សម្រាប់ y ក្នុង x=\frac{1}{4}y+\frac{5}{4}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{3+5}{4}
គុណ \frac{1}{4} ដង 3។
x=2
បូក \frac{5}{4} ជាមួយ \frac{3}{4} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=2,y=3
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
4x-y=5,-4x+5y=7
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}4&-1\\-4&5\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4\times 5-\left(-\left(-4\right)\right)}&-\frac{-1}{4\times 5-\left(-\left(-4\right)\right)}\\-\frac{-4}{4\times 5-\left(-\left(-4\right)\right)}&\frac{4}{4\times 5-\left(-\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{16}&\frac{1}{16}\\\frac{1}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{16}\times 5+\frac{1}{16}\times 7\\\frac{1}{4}\times 5+\frac{1}{4}\times 7\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
ធ្វើនព្វន្ត។
x=2,y=3
ទាញយកធាតុម៉ាទ្រីស x និង y។
4x-y=5,-4x+5y=7
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
-4\times 4x-4\left(-1\right)y=-4\times 5,4\left(-4\right)x+4\times 5y=4\times 7
ដើម្បីធ្វើឲ្យ 4x និង -4x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ -4 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 4។
-16x+4y=-20,-16x+20y=28
ផ្ទៀងផ្ទាត់។
-16x+16x+4y-20y=-20-28
ដក -16x+20y=28 ពី -16x+4y=-20 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
4y-20y=-20-28
បូក -16x ជាមួយ 16x។ ការលុបតួ -16x និង 16x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-16y=-20-28
បូក 4y ជាមួយ -20y។
-16y=-48
បូក -20 ជាមួយ -28។
y=3
ចែកជ្រុងទាំងពីនឹង -16។
-4x+5\times 3=7
ជំនួស 3 សម្រាប់ y ក្នុង -4x+5y=7។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
-4x+15=7
គុណ 5 ដង 3។
-4x=-8
ដក 15 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=2
ចែកជ្រុងទាំងពីនឹង -4។
x=2,y=3
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។