ដោះស្រាយសម្រាប់ x
x=\frac{\sqrt{6}-1}{2}\approx 0.724744871
x=\frac{-\sqrt{6}-1}{2}\approx -1.724744871
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
4x^{2}+4x=5
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
4x^{2}+4x-5=5-5
ដក 5 ពីជ្រុងទាំងពីរនៃសមីការរ។
4x^{2}+4x-5=0
ការដក 5 ពីខ្លួនឯងនៅសល់ 0។
x=\frac{-4±\sqrt{4^{2}-4\times 4\left(-5\right)}}{2\times 4}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 4 សម្រាប់ a, 4 សម្រាប់ b និង -5 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-4±\sqrt{16-4\times 4\left(-5\right)}}{2\times 4}
ការ៉េ 4។
x=\frac{-4±\sqrt{16-16\left(-5\right)}}{2\times 4}
គុណ -4 ដង 4។
x=\frac{-4±\sqrt{16+80}}{2\times 4}
គុណ -16 ដង -5។
x=\frac{-4±\sqrt{96}}{2\times 4}
បូក 16 ជាមួយ 80។
x=\frac{-4±4\sqrt{6}}{2\times 4}
យកឬសការ៉េនៃ 96។
x=\frac{-4±4\sqrt{6}}{8}
គុណ 2 ដង 4។
x=\frac{4\sqrt{6}-4}{8}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-4±4\sqrt{6}}{8} នៅពេល ± គឺជាសញ្ញាបូក។ បូក -4 ជាមួយ 4\sqrt{6}។
x=\frac{\sqrt{6}-1}{2}
ចែក -4+4\sqrt{6} នឹង 8។
x=\frac{-4\sqrt{6}-4}{8}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-4±4\sqrt{6}}{8} នៅពេល ± គឺជាសញ្ញាដក។ ដក 4\sqrt{6} ពី -4។
x=\frac{-\sqrt{6}-1}{2}
ចែក -4-4\sqrt{6} នឹង 8។
x=\frac{\sqrt{6}-1}{2} x=\frac{-\sqrt{6}-1}{2}
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
4x^{2}+4x=5
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
\frac{4x^{2}+4x}{4}=\frac{5}{4}
ចែកជ្រុងទាំងពីនឹង 4។
x^{2}+\frac{4}{4}x=\frac{5}{4}
ការចែកនឹង 4 មិនធ្វើប្រមាណវិធីគុណនឹង 4 ឡើងវិញ។
x^{2}+x=\frac{5}{4}
ចែក 4 នឹង 4។
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{5}{4}+\left(\frac{1}{2}\right)^{2}
ចែក 1 ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន \frac{1}{2}។ បន្ទាប់មកបូកការ៉េនៃ \frac{1}{2} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}+x+\frac{1}{4}=\frac{5+1}{4}
លើក \frac{1}{2} ជាការ៉េដោយលើកជាការ៉េទាំងភាគយក និងភាគបែងនៃប្រភាគ។
x^{2}+x+\frac{1}{4}=\frac{3}{2}
បូក \frac{5}{4} ជាមួយ \frac{1}{4} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
\left(x+\frac{1}{2}\right)^{2}=\frac{3}{2}
ដាក់ជាកត្តា x^{2}+x+\frac{1}{4} ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{3}{2}}
យកឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x+\frac{1}{2}=\frac{\sqrt{6}}{2} x+\frac{1}{2}=-\frac{\sqrt{6}}{2}
ផ្ទៀងផ្ទាត់។
x=\frac{\sqrt{6}-1}{2} x=\frac{-\sqrt{6}-1}{2}
ដក \frac{1}{2} ពីជ្រុងទាំងពីរនៃសមីការរ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}