រំលងទៅមាតិកាមេ
ដាក់ជាកត្តា
Tick mark Image
វាយតម្លៃ
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

2\left(2x^{2}+5x+3\right)
ដាក់ជាកត្តា 2។
a+b=5 ab=2\times 3=6
ពិនិត្យ 2x^{2}+5x+3។ ដាក់ជាកត្តានូវកន្សោម​ដោយដាក់ជាក្រុម។ ដំបូង​ កន្សោម​ត្រូវតែសរសេរឡើងវិញជា 2x^{2}+ax+bx+3។ ដើម្បីរក a និង b សូមបង្កើត​ប្រព័ន្ធដែល​ត្រូវដោះស្រាយ។
1,6 2,3
ដោយសារ ab ជាចំនួនវិជ្ជមាន a និង b មានសញ្ញាដូចគ្នា។ ដោយសារ a+b ជាចំនួនវិជ្ជមាន a ហើយ b ជាចំនួនវិជ្ជមានទាំងពីរ។ រាយ​ឈ្មោះគូ​ទាំងអស់ដែល​ផ្ដល់នូវផលគុណ 6។
1+6=7 2+3=5
គណនី​ផល​បូកសម្រាប់គូនីមួយៗ។
a=2 b=3
ចម្លើយគឺជា​គូ ដែលផ្ដល់​នូវផលបូក 5 ។
\left(2x^{2}+2x\right)+\left(3x+3\right)
សរសេរ 2x^{2}+5x+3 ឡើងវិញជា \left(2x^{2}+2x\right)+\left(3x+3\right)។
2x\left(x+1\right)+3\left(x+1\right)
ដាក់ជាកត្តា 2x នៅក្នុងក្រុមទីមួយ និង 3 ក្រុមទីពីរចេញ។
\left(x+1\right)\left(2x+3\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា x+1 ដោយប្រើលក្ខណៈបំបែក។
2\left(x+1\right)\left(2x+3\right)
សរសេរកន្សោមដែលបានដាក់ជាកត្តាពេញលេញឡើងវិញ។
4x^{2}+10x+6=0
ពហុធាកាដ្រាទីកអាចត្រូវបានដាក់ជាកត្តាដោយប្រើការបម្លែង ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ដែល x_{1} និង x_{2} គឺជា​ចម្លើយនៃ​សមីការរកាដ្រាទីក ax^{2}+bx+c=0។
x=\frac{-10±\sqrt{10^{2}-4\times 4\times 6}}{2\times 4}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-10±\sqrt{100-4\times 4\times 6}}{2\times 4}
ការ៉េ 10។
x=\frac{-10±\sqrt{100-16\times 6}}{2\times 4}
គុណ -4 ដង 4។
x=\frac{-10±\sqrt{100-96}}{2\times 4}
គុណ -16 ដង 6។
x=\frac{-10±\sqrt{4}}{2\times 4}
បូក 100 ជាមួយ -96។
x=\frac{-10±2}{2\times 4}
យកឬសការ៉េនៃ 4។
x=\frac{-10±2}{8}
គុណ 2 ដង 4។
x=-\frac{8}{8}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-10±2}{8} នៅពេល ± គឺជាសញ្ញាបូក។ បូក -10 ជាមួយ 2។
x=-1
ចែក -8 នឹង 8។
x=-\frac{12}{8}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-10±2}{8} នៅពេល ± គឺជាសញ្ញាដក។ ដក 2 ពី -10។
x=-\frac{3}{2}
កាត់បន្ថយប្រភាគ \frac{-12}{8} ទៅតួដែលតូចបំផុតដោយ​ដក និងលុបចេញ 4។
4x^{2}+10x+6=4\left(x-\left(-1\right)\right)\left(x-\left(-\frac{3}{2}\right)\right)
ដាក់កន្សោមដើមដាក់ជាកត្តា​ដោយប្រើ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)។ ជំនួស -1 សម្រាប់ x_{1} និង -\frac{3}{2} សម្រាប់ x_{2}។
4x^{2}+10x+6=4\left(x+1\right)\left(x+\frac{3}{2}\right)
សម្រួលកន្សោមទាំងអស់នៃទម្រង់ p-\left(-q\right) ទៅ p+q។
4x^{2}+10x+6=4\left(x+1\right)\times \frac{2x+3}{2}
បូក \frac{3}{2} ជាមួយ x ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
4x^{2}+10x+6=2\left(x+1\right)\left(2x+3\right)
សម្រួល 2 ដែលជាកត្តារួមធំបំផុតរវាង 4 និង 2។