ដោះស្រាយសម្រាប់ b
b=-\frac{17}{4p}
p\neq 0
ដោះស្រាយសម្រាប់ p
p=-\frac{17}{4b}
b\neq 0
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
-8bp=34
ប្ដូរផ្នែកទាំងពីរ ដើម្បីឲ្យតួអថេរទាំងអស់ស្ថិតនៅផ្នែកខាងឆ្វេង។
\left(-8p\right)b=34
សមីការឥឡូវនេះស្ថិតនៅក្នុងទម្រង់ស្ដង់ដារ។
\frac{\left(-8p\right)b}{-8p}=\frac{34}{-8p}
ចែកជ្រុងទាំងពីនឹង -8p។
b=\frac{34}{-8p}
ការចែកនឹង -8p មិនធ្វើប្រមាណវិធីគុណនឹង -8p ឡើងវិញ។
b=-\frac{17}{4p}
ចែក 34 នឹង -8p។
-8bp=34
ប្ដូរផ្នែកទាំងពីរ ដើម្បីឲ្យតួអថេរទាំងអស់ស្ថិតនៅផ្នែកខាងឆ្វេង។
\left(-8b\right)p=34
សមីការឥឡូវនេះស្ថិតនៅក្នុងទម្រង់ស្ដង់ដារ។
\frac{\left(-8b\right)p}{-8b}=\frac{34}{-8b}
ចែកជ្រុងទាំងពីនឹង -8b។
p=\frac{34}{-8b}
ការចែកនឹង -8b មិនធ្វើប្រមាណវិធីគុណនឹង -8b ឡើងវិញ។
p=-\frac{17}{4b}
ចែក 34 នឹង -8b។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}