រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

\left(x-1\right)^{2}\times 3-12=0
អថេរ x មិនអាចស្មើនឹង 1 បានទេ ដោយសារការចែកនឹងសូន្យមិនត្រូវបានកំណត់។ ធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរនៃសមីការរដោយ \left(x-1\right)^{2}។
\left(x^{2}-2x+1\right)\times 3-12=0
ប្រើទ្រឹស្ដីបទទ្វេរធា \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ដើម្បីពង្រីក \left(x-1\right)^{2}។
3x^{2}-6x+3-12=0
ប្រើលក្ខណៈបំបែក​ដើម្បីគុណ x^{2}-2x+1 នឹង 3។
3x^{2}-6x-9=0
ដក​ 12 ពី 3 ដើម្បីបាន -9។
x^{2}-2x-3=0
ចែកជ្រុងទាំងពីនឹង 3។
a+b=-2 ab=1\left(-3\right)=-3
ដើម្បីដោះស្រាយ​សមីការ សូមដាក់ផ្នែកខាងឆ្វេង​ដាក់ជាកត្តា​ដោយការដាក់ជាក្រុម។ ដំបូង ផ្នែកខាងឆ្វេងត្រូវតែសរសេរឡើងវិញជា x^{2}+ax+bx-3។ ដើម្បីរក a និង b សូមបង្កើត​ប្រព័ន្ធដែល​ត្រូវដោះស្រាយ។
a=-3 b=1
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន ចំនួនអវិជ្ជមានមានតម្លៃដាច់ខាតធំជាង​ចំនួនវិជ្ជមាន។ មានតែគូដូច្នេះប៉ុណ្ណោះគឺជាចម្លើយរបស់ប្រព័ន្ធ។
\left(x^{2}-3x\right)+\left(x-3\right)
សរសេរ x^{2}-2x-3 ឡើងវិញជា \left(x^{2}-3x\right)+\left(x-3\right)។
x\left(x-3\right)+x-3
ដាក់ជាកត្តា x នៅក្នុង x^{2}-3x។
\left(x-3\right)\left(x+1\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា x-3 ដោយប្រើលក្ខណៈបំបែក។
x=3 x=-1
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ x-3=0 និង x+1=0។
\left(x-1\right)^{2}\times 3-12=0
អថេរ x មិនអាចស្មើនឹង 1 បានទេ ដោយសារការចែកនឹងសូន្យមិនត្រូវបានកំណត់។ ធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរនៃសមីការរដោយ \left(x-1\right)^{2}។
\left(x^{2}-2x+1\right)\times 3-12=0
ប្រើទ្រឹស្ដីបទទ្វេរធា \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ដើម្បីពង្រីក \left(x-1\right)^{2}។
3x^{2}-6x+3-12=0
ប្រើលក្ខណៈបំបែក​ដើម្បីគុណ x^{2}-2x+1 នឹង 3។
3x^{2}-6x-9=0
ដក​ 12 ពី 3 ដើម្បីបាន -9។
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 3\left(-9\right)}}{2\times 3}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 3 សម្រាប់ a, -6 សម្រាប់ b និង -9 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-\left(-6\right)±\sqrt{36-4\times 3\left(-9\right)}}{2\times 3}
ការ៉េ -6។
x=\frac{-\left(-6\right)±\sqrt{36-12\left(-9\right)}}{2\times 3}
គុណ -4 ដង 3។
x=\frac{-\left(-6\right)±\sqrt{36+108}}{2\times 3}
គុណ -12 ដង -9។
x=\frac{-\left(-6\right)±\sqrt{144}}{2\times 3}
បូក 36 ជាមួយ 108។
x=\frac{-\left(-6\right)±12}{2\times 3}
យកឬសការ៉េនៃ 144។
x=\frac{6±12}{2\times 3}
ភាពផ្ទុយគ្នានៃ -6 គឺ 6។
x=\frac{6±12}{6}
គុណ 2 ដង 3។
x=\frac{18}{6}
ឥឡូវដោះស្រាយសមីការរ x=\frac{6±12}{6} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 6 ជាមួយ 12។
x=3
ចែក 18 នឹង 6។
x=-\frac{6}{6}
ឥឡូវដោះស្រាយសមីការរ x=\frac{6±12}{6} នៅពេល ± គឺជាសញ្ញាដក។ ដក 12 ពី 6។
x=-1
ចែក -6 នឹង 6។
x=3 x=-1
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
\left(x-1\right)^{2}\times 3-12=0
អថេរ x មិនអាចស្មើនឹង 1 បានទេ ដោយសារការចែកនឹងសូន្យមិនត្រូវបានកំណត់។ ធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរនៃសមីការរដោយ \left(x-1\right)^{2}។
\left(x^{2}-2x+1\right)\times 3-12=0
ប្រើទ្រឹស្ដីបទទ្វេរធា \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ដើម្បីពង្រីក \left(x-1\right)^{2}។
3x^{2}-6x+3-12=0
ប្រើលក្ខណៈបំបែក​ដើម្បីគុណ x^{2}-2x+1 នឹង 3។
3x^{2}-6x-9=0
ដក​ 12 ពី 3 ដើម្បីបាន -9។
3x^{2}-6x=9
បន្ថែម 9 ទៅជ្រុងទាំងពីរ។ អ្វីមួយបូកសូន្យបានខ្លួនឯង។
\frac{3x^{2}-6x}{3}=\frac{9}{3}
ចែកជ្រុងទាំងពីនឹង 3។
x^{2}+\left(-\frac{6}{3}\right)x=\frac{9}{3}
ការចែកនឹង 3 មិនធ្វើប្រមាណវិធីគុណនឹង 3 ឡើងវិញ។
x^{2}-2x=\frac{9}{3}
ចែក -6 នឹង 3។
x^{2}-2x=3
ចែក 9 នឹង 3។
x^{2}-2x+1=3+1
ចែក -2 ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន -1។ បន្ទាប់មក​បូកការ៉េនៃ -1 ជាមួយ​ជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}-2x+1=4
បូក 3 ជាមួយ 1។
\left(x-1\right)^{2}=4
ដាក់ជាកត្តា x^{2}-2x+1 ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x-1=2 x-1=-2
ផ្ទៀងផ្ទាត់។
x=3 x=-1
បូក 1 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។