រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x (complex solution)
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

3x-5-3x^{2}=-2x
ដក 3x^{2} ពីជ្រុងទាំងពីរ។
3x-5-3x^{2}+2x=0
បន្ថែម 2x ទៅជ្រុងទាំងពីរ។
5x-5-3x^{2}=0
បន្សំ 3x និង 2x ដើម្បីបាន 5x។
-3x^{2}+5x-5=0
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-5±\sqrt{5^{2}-4\left(-3\right)\left(-5\right)}}{2\left(-3\right)}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស -3 សម្រាប់ a, 5 សម្រាប់ b និង -5 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-5±\sqrt{25-4\left(-3\right)\left(-5\right)}}{2\left(-3\right)}
ការ៉េ 5។
x=\frac{-5±\sqrt{25+12\left(-5\right)}}{2\left(-3\right)}
គុណ -4 ដង -3។
x=\frac{-5±\sqrt{25-60}}{2\left(-3\right)}
គុណ 12 ដង -5។
x=\frac{-5±\sqrt{-35}}{2\left(-3\right)}
បូក 25 ជាមួយ -60។
x=\frac{-5±\sqrt{35}i}{2\left(-3\right)}
យកឬសការ៉េនៃ -35។
x=\frac{-5±\sqrt{35}i}{-6}
គុណ 2 ដង -3។
x=\frac{-5+\sqrt{35}i}{-6}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-5±\sqrt{35}i}{-6} នៅពេល ± គឺជាសញ្ញាបូក។ បូក -5 ជាមួយ i\sqrt{35}។
x=\frac{-\sqrt{35}i+5}{6}
ចែក -5+i\sqrt{35} នឹង -6។
x=\frac{-\sqrt{35}i-5}{-6}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-5±\sqrt{35}i}{-6} នៅពេល ± គឺជាសញ្ញាដក។ ដក i\sqrt{35} ពី -5។
x=\frac{5+\sqrt{35}i}{6}
ចែក -5-i\sqrt{35} នឹង -6។
x=\frac{-\sqrt{35}i+5}{6} x=\frac{5+\sqrt{35}i}{6}
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
3x-5-3x^{2}=-2x
ដក 3x^{2} ពីជ្រុងទាំងពីរ។
3x-5-3x^{2}+2x=0
បន្ថែម 2x ទៅជ្រុងទាំងពីរ។
5x-5-3x^{2}=0
បន្សំ 3x និង 2x ដើម្បីបាន 5x។
5x-3x^{2}=5
បន្ថែម 5 ទៅជ្រុងទាំងពីរ។ អ្វីមួយបូកសូន្យបានខ្លួនឯង។
-3x^{2}+5x=5
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយ​ការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
\frac{-3x^{2}+5x}{-3}=\frac{5}{-3}
ចែកជ្រុងទាំងពីនឹង -3។
x^{2}+\frac{5}{-3}x=\frac{5}{-3}
ការចែកនឹង -3 មិនធ្វើប្រមាណវិធីគុណនឹង -3 ឡើងវិញ។
x^{2}-\frac{5}{3}x=\frac{5}{-3}
ចែក 5 នឹង -3។
x^{2}-\frac{5}{3}x=-\frac{5}{3}
ចែក 5 នឹង -3។
x^{2}-\frac{5}{3}x+\left(-\frac{5}{6}\right)^{2}=-\frac{5}{3}+\left(-\frac{5}{6}\right)^{2}
ចែក -\frac{5}{3} ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន -\frac{5}{6}។ បន្ទាប់មក​បូកការ៉េនៃ -\frac{5}{6} ជាមួយ​ជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}-\frac{5}{3}x+\frac{25}{36}=-\frac{5}{3}+\frac{25}{36}
លើក -\frac{5}{6} ជាការ៉េដោយលើកជាការ៉េទាំងភាគយក និងភាគបែងនៃប្រភាគ។
x^{2}-\frac{5}{3}x+\frac{25}{36}=-\frac{35}{36}
បូក -\frac{5}{3} ជាមួយ \frac{25}{36} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
\left(x-\frac{5}{6}\right)^{2}=-\frac{35}{36}
ដាក់ជាកត្តា x^{2}-\frac{5}{3}x+\frac{25}{36} ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x-\frac{5}{6}\right)^{2}}=\sqrt{-\frac{35}{36}}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x-\frac{5}{6}=\frac{\sqrt{35}i}{6} x-\frac{5}{6}=-\frac{\sqrt{35}i}{6}
ផ្ទៀងផ្ទាត់។
x=\frac{5+\sqrt{35}i}{6} x=\frac{-\sqrt{35}i+5}{6}
បូក \frac{5}{6} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។