រំលងទៅមាតិកាមេ
ដាក់ជាកត្តា
Tick mark Image
វាយតម្លៃ
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

3\left(x^{2}-3x+2\right)
ដាក់ជាកត្តា 3។
a+b=-3 ab=1\times 2=2
ពិនិត្យ x^{2}-3x+2។ ដាក់ជាកត្តានូវកន្សោម​ដោយដាក់ជាក្រុម។ ដំបូង​ កន្សោម​ត្រូវតែសរសេរឡើងវិញជា x^{2}+ax+bx+2។ ដើម្បីរក a និង b សូមបង្កើត​ប្រព័ន្ធដែល​ត្រូវដោះស្រាយ។
a=-2 b=-1
ដោយសារ ab ជាចំនួនវិជ្ជមាន a និង b មានសញ្ញាដូចគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន a ហើយ b ជាចំនួនអវិជ្ជមានទាំងពីរ។ មានតែគូដូច្នេះប៉ុណ្ណោះគឺជាចម្លើយរបស់ប្រព័ន្ធ។
\left(x^{2}-2x\right)+\left(-x+2\right)
សរសេរ x^{2}-3x+2 ឡើងវិញជា \left(x^{2}-2x\right)+\left(-x+2\right)។
x\left(x-2\right)-\left(x-2\right)
ដាក់ជាកត្តា x នៅក្នុងក្រុមទីមួយ និង -1 ក្រុមទីពីរចេញ។
\left(x-2\right)\left(x-1\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា x-2 ដោយប្រើលក្ខណៈបំបែក។
3\left(x-2\right)\left(x-1\right)
សរសេរកន្សោមដែលបានដាក់ជាកត្តាពេញលេញឡើងវិញ។
3x^{2}-9x+6=0
ពហុធាកាដ្រាទីកអាចត្រូវបានដាក់ជាកត្តាដោយប្រើការបម្លែង ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ដែល x_{1} និង x_{2} គឺជា​ចម្លើយនៃ​សមីការរកាដ្រាទីក ax^{2}+bx+c=0។
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 3\times 6}}{2\times 3}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-\left(-9\right)±\sqrt{81-4\times 3\times 6}}{2\times 3}
ការ៉េ -9។
x=\frac{-\left(-9\right)±\sqrt{81-12\times 6}}{2\times 3}
គុណ -4 ដង 3។
x=\frac{-\left(-9\right)±\sqrt{81-72}}{2\times 3}
គុណ -12 ដង 6។
x=\frac{-\left(-9\right)±\sqrt{9}}{2\times 3}
បូក 81 ជាមួយ -72។
x=\frac{-\left(-9\right)±3}{2\times 3}
យកឬសការ៉េនៃ 9។
x=\frac{9±3}{2\times 3}
ភាពផ្ទុយគ្នានៃ -9 គឺ 9។
x=\frac{9±3}{6}
គុណ 2 ដង 3។
x=\frac{12}{6}
ឥឡូវដោះស្រាយសមីការរ x=\frac{9±3}{6} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 9 ជាមួយ 3។
x=2
ចែក 12 នឹង 6។
x=\frac{6}{6}
ឥឡូវដោះស្រាយសមីការរ x=\frac{9±3}{6} នៅពេល ± គឺជាសញ្ញាដក។ ដក 3 ពី 9។
x=1
ចែក 6 នឹង 6។
3x^{2}-9x+6=3\left(x-2\right)\left(x-1\right)
ដាក់កន្សោមដើមដាក់ជាកត្តា​ដោយប្រើ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)។ ជំនួស 2 សម្រាប់ x_{1} និង 1 សម្រាប់ x_{2}។