រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

3x^{2}-8x-1=0
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 3\left(-1\right)}}{2\times 3}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 3 សម្រាប់ a, -8 សម្រាប់ b និង -1 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-\left(-8\right)±\sqrt{64-4\times 3\left(-1\right)}}{2\times 3}
ការ៉េ -8។
x=\frac{-\left(-8\right)±\sqrt{64-12\left(-1\right)}}{2\times 3}
គុណ -4 ដង 3។
x=\frac{-\left(-8\right)±\sqrt{64+12}}{2\times 3}
គុណ -12 ដង -1។
x=\frac{-\left(-8\right)±\sqrt{76}}{2\times 3}
បូក 64 ជាមួយ 12។
x=\frac{-\left(-8\right)±2\sqrt{19}}{2\times 3}
យកឬសការ៉េនៃ 76។
x=\frac{8±2\sqrt{19}}{2\times 3}
ភាពផ្ទុយគ្នានៃ -8 គឺ 8។
x=\frac{8±2\sqrt{19}}{6}
គុណ 2 ដង 3។
x=\frac{2\sqrt{19}+8}{6}
ឥឡូវដោះស្រាយសមីការរ x=\frac{8±2\sqrt{19}}{6} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 8 ជាមួយ 2\sqrt{19}។
x=\frac{\sqrt{19}+4}{3}
ចែក 8+2\sqrt{19} នឹង 6។
x=\frac{8-2\sqrt{19}}{6}
ឥឡូវដោះស្រាយសមីការរ x=\frac{8±2\sqrt{19}}{6} នៅពេល ± គឺជាសញ្ញាដក។ ដក 2\sqrt{19} ពី 8។
x=\frac{4-\sqrt{19}}{3}
ចែក 8-2\sqrt{19} នឹង 6។
x=\frac{\sqrt{19}+4}{3} x=\frac{4-\sqrt{19}}{3}
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
3x^{2}-8x-1=0
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយ​ការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
3x^{2}-8x-1-\left(-1\right)=-\left(-1\right)
បូក 1 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
3x^{2}-8x=-\left(-1\right)
ការដក -1 ពីខ្លួនឯងនៅសល់ 0។
3x^{2}-8x=1
ដក -1 ពី 0។
\frac{3x^{2}-8x}{3}=\frac{1}{3}
ចែកជ្រុងទាំងពីនឹង 3។
x^{2}-\frac{8}{3}x=\frac{1}{3}
ការចែកនឹង 3 មិនធ្វើប្រមាណវិធីគុណនឹង 3 ឡើងវិញ។
x^{2}-\frac{8}{3}x+\left(-\frac{4}{3}\right)^{2}=\frac{1}{3}+\left(-\frac{4}{3}\right)^{2}
ចែក -\frac{8}{3} ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន -\frac{4}{3}។ បន្ទាប់មក​បូកការ៉េនៃ -\frac{4}{3} ជាមួយ​ជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}-\frac{8}{3}x+\frac{16}{9}=\frac{1}{3}+\frac{16}{9}
លើក -\frac{4}{3} ជាការ៉េដោយលើកជាការ៉េទាំងភាគយក និងភាគបែងនៃប្រភាគ។
x^{2}-\frac{8}{3}x+\frac{16}{9}=\frac{19}{9}
បូក \frac{1}{3} ជាមួយ \frac{16}{9} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
\left(x-\frac{4}{3}\right)^{2}=\frac{19}{9}
ដាក់ជាកត្តា x^{2}-\frac{8}{3}x+\frac{16}{9} ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x-\frac{4}{3}\right)^{2}}=\sqrt{\frac{19}{9}}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x-\frac{4}{3}=\frac{\sqrt{19}}{3} x-\frac{4}{3}=-\frac{\sqrt{19}}{3}
ផ្ទៀងផ្ទាត់។
x=\frac{\sqrt{19}+4}{3} x=\frac{4-\sqrt{19}}{3}
បូក \frac{4}{3} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។