ដោះស្រាយសម្រាប់ x
x=1
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
a+b=-7 ab=3\times 4=12
ដើម្បីដោះស្រាយសមីការ សូមដាក់ផ្នែកខាងឆ្វេងដាក់ជាកត្តាដោយការដាក់ជាក្រុម។ ដំបូង ផ្នែកខាងឆ្វេងត្រូវតែសរសេរឡើងវិញជា 3x^{2}+ax+bx+4។ ដើម្បីរក a និង b សូមបង្កើតប្រព័ន្ធដែលត្រូវដោះស្រាយ។
-1,-12 -2,-6 -3,-4
ដោយសារ ab ជាចំនួនវិជ្ជមាន a និង b មានសញ្ញាដូចគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន a ហើយ b ជាចំនួនអវិជ្ជមានទាំងពីរ។ រាយឈ្មោះគូទាំងអស់ដែលផ្ដល់នូវផលគុណ 12។
-1-12=-13 -2-6=-8 -3-4=-7
គណនីផលបូកសម្រាប់គូនីមួយៗ។
a=-4 b=-3
ចម្លើយគឺជាគូ ដែលផ្ដល់នូវផលបូក -7 ។
\left(3x^{2}-4x\right)+\left(-3x+4\right)
សរសេរ 3x^{2}-7x+4 ឡើងវិញជា \left(3x^{2}-4x\right)+\left(-3x+4\right)។
x\left(3x-4\right)-\left(3x-4\right)
ដាក់ជាកត្តា x នៅក្នុងក្រុមទីមួយ និង -1 ក្រុមទីពីរចេញ។
\left(3x-4\right)\left(x-1\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា 3x-4 ដោយប្រើលក្ខណៈបំបែក។
x=\frac{4}{3} x=1
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ 3x-4=0 និង x-1=0។
3x^{2}-7x+4=0
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 3\times 4}}{2\times 3}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 3 សម្រាប់ a, -7 សម្រាប់ b និង 4 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-\left(-7\right)±\sqrt{49-4\times 3\times 4}}{2\times 3}
ការ៉េ -7។
x=\frac{-\left(-7\right)±\sqrt{49-12\times 4}}{2\times 3}
គុណ -4 ដង 3។
x=\frac{-\left(-7\right)±\sqrt{49-48}}{2\times 3}
គុណ -12 ដង 4។
x=\frac{-\left(-7\right)±\sqrt{1}}{2\times 3}
បូក 49 ជាមួយ -48។
x=\frac{-\left(-7\right)±1}{2\times 3}
យកឬសការ៉េនៃ 1។
x=\frac{7±1}{2\times 3}
ភាពផ្ទុយគ្នានៃ -7 គឺ 7។
x=\frac{7±1}{6}
គុណ 2 ដង 3។
x=\frac{8}{6}
ឥឡូវដោះស្រាយសមីការរ x=\frac{7±1}{6} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 7 ជាមួយ 1។
x=\frac{4}{3}
កាត់បន្ថយប្រភាគ \frac{8}{6} ទៅតួដែលតូចបំផុតដោយដក និងលុបចេញ 2។
x=\frac{6}{6}
ឥឡូវដោះស្រាយសមីការរ x=\frac{7±1}{6} នៅពេល ± គឺជាសញ្ញាដក។ ដក 1 ពី 7។
x=1
ចែក 6 នឹង 6។
x=\frac{4}{3} x=1
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
3x^{2}-7x+4=0
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
3x^{2}-7x+4-4=-4
ដក 4 ពីជ្រុងទាំងពីរនៃសមីការរ។
3x^{2}-7x=-4
ការដក 4 ពីខ្លួនឯងនៅសល់ 0។
\frac{3x^{2}-7x}{3}=-\frac{4}{3}
ចែកជ្រុងទាំងពីនឹង 3។
x^{2}-\frac{7}{3}x=-\frac{4}{3}
ការចែកនឹង 3 មិនធ្វើប្រមាណវិធីគុណនឹង 3 ឡើងវិញ។
x^{2}-\frac{7}{3}x+\left(-\frac{7}{6}\right)^{2}=-\frac{4}{3}+\left(-\frac{7}{6}\right)^{2}
ចែក -\frac{7}{3} ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន -\frac{7}{6}។ បន្ទាប់មកបូកការ៉េនៃ -\frac{7}{6} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}-\frac{7}{3}x+\frac{49}{36}=-\frac{4}{3}+\frac{49}{36}
លើក -\frac{7}{6} ជាការ៉េដោយលើកជាការ៉េទាំងភាគយក និងភាគបែងនៃប្រភាគ។
x^{2}-\frac{7}{3}x+\frac{49}{36}=\frac{1}{36}
បូក -\frac{4}{3} ជាមួយ \frac{49}{36} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
\left(x-\frac{7}{6}\right)^{2}=\frac{1}{36}
ដាក់ជាកត្តា x^{2}-\frac{7}{3}x+\frac{49}{36} ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x-\frac{7}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
យកឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x-\frac{7}{6}=\frac{1}{6} x-\frac{7}{6}=-\frac{1}{6}
ផ្ទៀងផ្ទាត់។
x=\frac{4}{3} x=1
បូក \frac{7}{6} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}