រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x^{2}+3x-10=0
ចែកជ្រុងទាំងពីនឹង 3។
a+b=3 ab=1\left(-10\right)=-10
ដើម្បីដោះស្រាយ​សមីការ សូមដាក់ផ្នែកខាងឆ្វេង​ដាក់ជាកត្តា​ដោយការដាក់ជាក្រុម។ ដំបូង ផ្នែកខាងឆ្វេងត្រូវតែសរសេរឡើងវិញជា x^{2}+ax+bx-10។ ដើម្បីរក a និង b សូមបង្កើត​ប្រព័ន្ធដែល​ត្រូវដោះស្រាយ។
-1,10 -2,5
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនវិជ្ជមាន ចំនួនវិជ្ជមានមានតម្លៃដាច់ខាតធំជាង​ចំនួនអវិជ្ជមាន។ រាយ​ឈ្មោះគូ​ទាំងអស់ដែល​ផ្ដល់នូវផលគុណ -10។
-1+10=9 -2+5=3
គណនី​ផល​បូកសម្រាប់គូនីមួយៗ។
a=-2 b=5
ចម្លើយគឺជា​គូ ដែលផ្ដល់​នូវផលបូក 3 ។
\left(x^{2}-2x\right)+\left(5x-10\right)
សរសេរ x^{2}+3x-10 ឡើងវិញជា \left(x^{2}-2x\right)+\left(5x-10\right)។
x\left(x-2\right)+5\left(x-2\right)
ដាក់ជាកត្តា x នៅក្នុងក្រុមទីមួយ និង 5 ក្រុមទីពីរចេញ។
\left(x-2\right)\left(x+5\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា x-2 ដោយប្រើលក្ខណៈបំបែក។
x=2 x=-5
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ x-2=0 និង x+5=0។
3x^{2}+9x-30=0
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-9±\sqrt{9^{2}-4\times 3\left(-30\right)}}{2\times 3}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 3 សម្រាប់ a, 9 សម្រាប់ b និង -30 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-9±\sqrt{81-4\times 3\left(-30\right)}}{2\times 3}
ការ៉េ 9។
x=\frac{-9±\sqrt{81-12\left(-30\right)}}{2\times 3}
គុណ -4 ដង 3។
x=\frac{-9±\sqrt{81+360}}{2\times 3}
គុណ -12 ដង -30។
x=\frac{-9±\sqrt{441}}{2\times 3}
បូក 81 ជាមួយ 360។
x=\frac{-9±21}{2\times 3}
យកឬសការ៉េនៃ 441។
x=\frac{-9±21}{6}
គុណ 2 ដង 3។
x=\frac{12}{6}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-9±21}{6} នៅពេល ± គឺជាសញ្ញាបូក។ បូក -9 ជាមួយ 21។
x=2
ចែក 12 នឹង 6។
x=-\frac{30}{6}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-9±21}{6} នៅពេល ± គឺជាសញ្ញាដក។ ដក 21 ពី -9។
x=-5
ចែក -30 នឹង 6។
x=2 x=-5
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
3x^{2}+9x-30=0
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយ​ការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
3x^{2}+9x-30-\left(-30\right)=-\left(-30\right)
បូក 30 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
3x^{2}+9x=-\left(-30\right)
ការដក -30 ពីខ្លួនឯងនៅសល់ 0។
3x^{2}+9x=30
ដក -30 ពី 0។
\frac{3x^{2}+9x}{3}=\frac{30}{3}
ចែកជ្រុងទាំងពីនឹង 3។
x^{2}+\frac{9}{3}x=\frac{30}{3}
ការចែកនឹង 3 មិនធ្វើប្រមាណវិធីគុណនឹង 3 ឡើងវិញ។
x^{2}+3x=\frac{30}{3}
ចែក 9 នឹង 3។
x^{2}+3x=10
ចែក 30 នឹង 3។
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=10+\left(\frac{3}{2}\right)^{2}
ចែក 3 ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន \frac{3}{2}។ បន្ទាប់មក​បូកការ៉េនៃ \frac{3}{2} ជាមួយ​ជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}+3x+\frac{9}{4}=10+\frac{9}{4}
លើក \frac{3}{2} ជាការ៉េដោយលើកជាការ៉េទាំងភាគយក និងភាគបែងនៃប្រភាគ។
x^{2}+3x+\frac{9}{4}=\frac{49}{4}
បូក 10 ជាមួយ \frac{9}{4}។
\left(x+\frac{3}{2}\right)^{2}=\frac{49}{4}
ដាក់ជាកត្តា x^{2}+3x+\frac{9}{4} ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x+\frac{3}{2}=\frac{7}{2} x+\frac{3}{2}=-\frac{7}{2}
ផ្ទៀងផ្ទាត់។
x=2 x=-5
ដក \frac{3}{2} ពីជ្រុងទាំងពីរនៃសមីការរ។