រំលងទៅមាតិកាមេ
ដាក់ជាកត្តា
Tick mark Image
វាយតម្លៃ
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

a+b=4 ab=3\left(-4\right)=-12
ដាក់ជាកត្តានូវកន្សោម​ដោយដាក់ជាក្រុម។ ដំបូង​ កន្សោម​ត្រូវតែសរសេរឡើងវិញជា 3x^{2}+ax+bx-4។ ដើម្បីរក a និង b សូមបង្កើត​ប្រព័ន្ធដែល​ត្រូវដោះស្រាយ។
-1,12 -2,6 -3,4
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនវិជ្ជមាន ចំនួនវិជ្ជមានមានតម្លៃដាច់ខាតធំជាង​ចំនួនអវិជ្ជមាន។ រាយ​ឈ្មោះគូ​ទាំងអស់ដែល​ផ្ដល់នូវផលគុណ -12។
-1+12=11 -2+6=4 -3+4=1
គណនី​ផល​បូកសម្រាប់គូនីមួយៗ។
a=-2 b=6
ចម្លើយគឺជា​គូ ដែលផ្ដល់​នូវផលបូក 4 ។
\left(3x^{2}-2x\right)+\left(6x-4\right)
សរសេរ 3x^{2}+4x-4 ឡើងវិញជា \left(3x^{2}-2x\right)+\left(6x-4\right)។
x\left(3x-2\right)+2\left(3x-2\right)
ដាក់ជាកត្តា x នៅក្នុងក្រុមទីមួយ និង 2 ក្រុមទីពីរចេញ។
\left(3x-2\right)\left(x+2\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា 3x-2 ដោយប្រើលក្ខណៈបំបែក។
3x^{2}+4x-4=0
ពហុធាកាដ្រាទីកអាចត្រូវបានដាក់ជាកត្តាដោយប្រើការបម្លែង ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ដែល x_{1} និង x_{2} គឺជា​ចម្លើយនៃ​សមីការរកាដ្រាទីក ax^{2}+bx+c=0។
x=\frac{-4±\sqrt{4^{2}-4\times 3\left(-4\right)}}{2\times 3}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-4±\sqrt{16-4\times 3\left(-4\right)}}{2\times 3}
ការ៉េ 4។
x=\frac{-4±\sqrt{16-12\left(-4\right)}}{2\times 3}
គុណ -4 ដង 3។
x=\frac{-4±\sqrt{16+48}}{2\times 3}
គុណ -12 ដង -4។
x=\frac{-4±\sqrt{64}}{2\times 3}
បូក 16 ជាមួយ 48។
x=\frac{-4±8}{2\times 3}
យកឬសការ៉េនៃ 64។
x=\frac{-4±8}{6}
គុណ 2 ដង 3។
x=\frac{4}{6}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-4±8}{6} នៅពេល ± គឺជាសញ្ញាបូក។ បូក -4 ជាមួយ 8។
x=\frac{2}{3}
កាត់បន្ថយប្រភាគ \frac{4}{6} ទៅតួដែលតូចបំផុតដោយ​ដក និងលុបចេញ 2។
x=-\frac{12}{6}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-4±8}{6} នៅពេល ± គឺជាសញ្ញាដក។ ដក 8 ពី -4។
x=-2
ចែក -12 នឹង 6។
3x^{2}+4x-4=3\left(x-\frac{2}{3}\right)\left(x-\left(-2\right)\right)
ដាក់កន្សោមដើមដាក់ជាកត្តា​ដោយប្រើ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)។ ជំនួស \frac{2}{3} សម្រាប់ x_{1} និង -2 សម្រាប់ x_{2}។
3x^{2}+4x-4=3\left(x-\frac{2}{3}\right)\left(x+2\right)
សម្រួលកន្សោមទាំងអស់នៃទម្រង់ p-\left(-q\right) ទៅ p+q។
3x^{2}+4x-4=3\times \frac{3x-2}{3}\left(x+2\right)
ដក \frac{2}{3} ពី x ដោយ​ការរក​ភាគបែងរួម ហើយដកភាគយក។ បន្ទាប់មកបន្ថយ​ប្រភាគ​ទៅចំនួនដែលទាបបំផុត បើអាចធ្វើបាន។
3x^{2}+4x-4=\left(3x-2\right)\left(x+2\right)
សម្រួល 3 ដែលជាកត្តារួមធំបំផុតរវាង 3 និង 3។