រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

a+b=-10 ab=3\left(-8\right)=-24
ដើម្បីដោះស្រាយ​សមីការ សូមដាក់ផ្នែកខាងឆ្វេង​ដាក់ជាកត្តា​ដោយការដាក់ជាក្រុម។ ដំបូង ផ្នែកខាងឆ្វេងត្រូវតែសរសេរឡើងវិញជា 3x^{2}+ax+bx-8។ ដើម្បីរក a និង b សូមបង្កើត​ប្រព័ន្ធដែល​ត្រូវដោះស្រាយ។
1,-24 2,-12 3,-8 4,-6
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន ចំនួនអវិជ្ជមានមានតម្លៃដាច់ខាតធំជាង​ចំនួនវិជ្ជមាន។ រាយ​ឈ្មោះគូ​ទាំងអស់ដែល​ផ្ដល់នូវផលគុណ -24។
1-24=-23 2-12=-10 3-8=-5 4-6=-2
គណនី​ផល​បូកសម្រាប់គូនីមួយៗ។
a=-12 b=2
ចម្លើយគឺជា​គូ ដែលផ្ដល់​នូវផលបូក -10 ។
\left(3x^{2}-12x\right)+\left(2x-8\right)
សរសេរ 3x^{2}-10x-8 ឡើងវិញជា \left(3x^{2}-12x\right)+\left(2x-8\right)។
3x\left(x-4\right)+2\left(x-4\right)
ដាក់ជាកត្តា 3x នៅក្នុងក្រុមទីមួយ និង 2 ក្រុមទីពីរចេញ។
\left(x-4\right)\left(3x+2\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា x-4 ដោយប្រើលក្ខណៈបំបែក។
x=4 x=-\frac{2}{3}
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ x-4=0 និង 3x+2=0។
3x^{2}-10x-8=0
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 3\left(-8\right)}}{2\times 3}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 3 សម្រាប់ a, -10 សម្រាប់ b និង -8 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-\left(-10\right)±\sqrt{100-4\times 3\left(-8\right)}}{2\times 3}
ការ៉េ -10។
x=\frac{-\left(-10\right)±\sqrt{100-12\left(-8\right)}}{2\times 3}
គុណ -4 ដង 3។
x=\frac{-\left(-10\right)±\sqrt{100+96}}{2\times 3}
គុណ -12 ដង -8។
x=\frac{-\left(-10\right)±\sqrt{196}}{2\times 3}
បូក 100 ជាមួយ 96។
x=\frac{-\left(-10\right)±14}{2\times 3}
យកឬសការ៉េនៃ 196។
x=\frac{10±14}{2\times 3}
ភាពផ្ទុយគ្នានៃ -10 គឺ 10។
x=\frac{10±14}{6}
គុណ 2 ដង 3។
x=\frac{24}{6}
ឥឡូវដោះស្រាយសមីការរ x=\frac{10±14}{6} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 10 ជាមួយ 14។
x=4
ចែក 24 នឹង 6។
x=-\frac{4}{6}
ឥឡូវដោះស្រាយសមីការរ x=\frac{10±14}{6} នៅពេល ± គឺជាសញ្ញាដក។ ដក 14 ពី 10។
x=-\frac{2}{3}
កាត់បន្ថយប្រភាគ \frac{-4}{6} ទៅតួដែលតូចបំផុតដោយ​ដក និងលុបចេញ 2។
x=4 x=-\frac{2}{3}
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
3x^{2}-10x-8=0
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយ​ការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
3x^{2}-10x-8-\left(-8\right)=-\left(-8\right)
បូក 8 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
3x^{2}-10x=-\left(-8\right)
ការដក -8 ពីខ្លួនឯងនៅសល់ 0។
3x^{2}-10x=8
ដក -8 ពី 0។
\frac{3x^{2}-10x}{3}=\frac{8}{3}
ចែកជ្រុងទាំងពីនឹង 3។
x^{2}-\frac{10}{3}x=\frac{8}{3}
ការចែកនឹង 3 មិនធ្វើប្រមាណវិធីគុណនឹង 3 ឡើងវិញ។
x^{2}-\frac{10}{3}x+\left(-\frac{5}{3}\right)^{2}=\frac{8}{3}+\left(-\frac{5}{3}\right)^{2}
ចែក -\frac{10}{3} ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន -\frac{5}{3}។ បន្ទាប់មក​បូកការ៉េនៃ -\frac{5}{3} ជាមួយ​ជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}-\frac{10}{3}x+\frac{25}{9}=\frac{8}{3}+\frac{25}{9}
លើក -\frac{5}{3} ជាការ៉េដោយលើកជាការ៉េទាំងភាគយក និងភាគបែងនៃប្រភាគ។
x^{2}-\frac{10}{3}x+\frac{25}{9}=\frac{49}{9}
បូក \frac{8}{3} ជាមួយ \frac{25}{9} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
\left(x-\frac{5}{3}\right)^{2}=\frac{49}{9}
ដាក់ជាកត្តា x^{2}-\frac{10}{3}x+\frac{25}{9} ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x-\frac{5}{3}\right)^{2}}=\sqrt{\frac{49}{9}}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x-\frac{5}{3}=\frac{7}{3} x-\frac{5}{3}=-\frac{7}{3}
ផ្ទៀងផ្ទាត់។
x=4 x=-\frac{2}{3}
បូក \frac{5}{3} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។