រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x\left(3x+2\right)=0
ដាក់ជាកត្តា x។
x=0 x=-\frac{2}{3}
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ x=0 និង 3x+2=0។
3x^{2}+2x=0
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-2±\sqrt{2^{2}}}{2\times 3}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 3 សម្រាប់ a, 2 សម្រាប់ b និង 0 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-2±2}{2\times 3}
យកឬសការ៉េនៃ 2^{2}។
x=\frac{-2±2}{6}
គុណ 2 ដង 3។
x=\frac{0}{6}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-2±2}{6} នៅពេល ± គឺជាសញ្ញាបូក។ បូក -2 ជាមួយ 2។
x=0
ចែក 0 នឹង 6។
x=-\frac{4}{6}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-2±2}{6} នៅពេល ± គឺជាសញ្ញាដក។ ដក 2 ពី -2។
x=-\frac{2}{3}
កាត់បន្ថយប្រភាគ \frac{-4}{6} ទៅតួដែលតូចបំផុតដោយ​ដក និងលុបចេញ 2។
x=0 x=-\frac{2}{3}
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
3x^{2}+2x=0
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយ​ការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
\frac{3x^{2}+2x}{3}=\frac{0}{3}
ចែកជ្រុងទាំងពីនឹង 3។
x^{2}+\frac{2}{3}x=\frac{0}{3}
ការចែកនឹង 3 មិនធ្វើប្រមាណវិធីគុណនឹង 3 ឡើងវិញ។
x^{2}+\frac{2}{3}x=0
ចែក 0 នឹង 3។
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\left(\frac{1}{3}\right)^{2}
ចែក \frac{2}{3} ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន \frac{1}{3}។ បន្ទាប់មក​បូកការ៉េនៃ \frac{1}{3} ជាមួយ​ជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{1}{9}
លើក \frac{1}{3} ជាការ៉េដោយលើកជាការ៉េទាំងភាគយក និងភាគបែងនៃប្រភាគ។
\left(x+\frac{1}{3}\right)^{2}=\frac{1}{9}
ដាក់ជាកត្តា x^{2}+\frac{2}{3}x+\frac{1}{9} ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x+\frac{1}{3}=\frac{1}{3} x+\frac{1}{3}=-\frac{1}{3}
ផ្ទៀងផ្ទាត់។
x=0 x=-\frac{2}{3}
ដក \frac{1}{3} ពីជ្រុងទាំងពីរនៃសមីការរ។