ដាក់ជាកត្តា
\left(23x-1\right)\left(x+2\right)
វាយតម្លៃ
\left(23x-1\right)\left(x+2\right)
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
a+b=45 ab=23\left(-2\right)=-46
ដាក់ជាកត្តានូវកន្សោមដោយដាក់ជាក្រុម។ ដំបូង កន្សោមត្រូវតែសរសេរឡើងវិញជា 23x^{2}+ax+bx-2។ ដើម្បីរក a និង b សូមបង្កើតប្រព័ន្ធដែលត្រូវដោះស្រាយ។
-1,46 -2,23
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនវិជ្ជមាន ចំនួនវិជ្ជមានមានតម្លៃដាច់ខាតធំជាងចំនួនអវិជ្ជមាន។ រាយឈ្មោះគូទាំងអស់ដែលផ្ដល់នូវផលគុណ -46។
-1+46=45 -2+23=21
គណនីផលបូកសម្រាប់គូនីមួយៗ។
a=-1 b=46
ចម្លើយគឺជាគូ ដែលផ្ដល់នូវផលបូក 45 ។
\left(23x^{2}-x\right)+\left(46x-2\right)
សរសេរ 23x^{2}+45x-2 ឡើងវិញជា \left(23x^{2}-x\right)+\left(46x-2\right)។
x\left(23x-1\right)+2\left(23x-1\right)
ដាក់ជាកត្តា x នៅក្នុងក្រុមទីមួយ និង 2 ក្រុមទីពីរចេញ។
\left(23x-1\right)\left(x+2\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា 23x-1 ដោយប្រើលក្ខណៈបំបែក។
23x^{2}+45x-2=0
ពហុធាកាដ្រាទីកអាចត្រូវបានដាក់ជាកត្តាដោយប្រើការបម្លែង ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ដែល x_{1} និង x_{2} គឺជាចម្លើយនៃសមីការរកាដ្រាទីក ax^{2}+bx+c=0។
x=\frac{-45±\sqrt{45^{2}-4\times 23\left(-2\right)}}{2\times 23}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-45±\sqrt{2025-4\times 23\left(-2\right)}}{2\times 23}
ការ៉េ 45។
x=\frac{-45±\sqrt{2025-92\left(-2\right)}}{2\times 23}
គុណ -4 ដង 23។
x=\frac{-45±\sqrt{2025+184}}{2\times 23}
គុណ -92 ដង -2។
x=\frac{-45±\sqrt{2209}}{2\times 23}
បូក 2025 ជាមួយ 184។
x=\frac{-45±47}{2\times 23}
យកឬសការ៉េនៃ 2209។
x=\frac{-45±47}{46}
គុណ 2 ដង 23។
x=\frac{2}{46}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-45±47}{46} នៅពេល ± គឺជាសញ្ញាបូក។ បូក -45 ជាមួយ 47។
x=\frac{1}{23}
កាត់បន្ថយប្រភាគ \frac{2}{46} ទៅតួដែលតូចបំផុតដោយដក និងលុបចេញ 2។
x=-\frac{92}{46}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-45±47}{46} នៅពេល ± គឺជាសញ្ញាដក។ ដក 47 ពី -45។
x=-2
ចែក -92 នឹង 46។
23x^{2}+45x-2=23\left(x-\frac{1}{23}\right)\left(x-\left(-2\right)\right)
ដាក់កន្សោមដើមដាក់ជាកត្តាដោយប្រើ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)។ ជំនួស \frac{1}{23} សម្រាប់ x_{1} និង -2 សម្រាប់ x_{2}។
23x^{2}+45x-2=23\left(x-\frac{1}{23}\right)\left(x+2\right)
សម្រួលកន្សោមទាំងអស់នៃទម្រង់ p-\left(-q\right) ទៅ p+q។
23x^{2}+45x-2=23\times \frac{23x-1}{23}\left(x+2\right)
ដក \frac{1}{23} ពី x ដោយការរកភាគបែងរួម ហើយដកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅចំនួនដែលទាបបំផុត បើអាចធ្វើបាន។
23x^{2}+45x-2=\left(23x-1\right)\left(x+2\right)
សម្រួល 23 ដែលជាកត្តារួមធំបំផុតរវាង 23 និង 23។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}