ដាក់ជាកត្តា
\left(3x-1\right)\left(7x+2\right)
វាយតម្លៃ
\left(3x-1\right)\left(7x+2\right)
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
a+b=-1 ab=21\left(-2\right)=-42
ដាក់ជាកត្តានូវកន្សោមដោយដាក់ជាក្រុម។ ដំបូង កន្សោមត្រូវតែសរសេរឡើងវិញជា 21x^{2}+ax+bx-2។ ដើម្បីរក a និង b សូមបង្កើតប្រព័ន្ធដែលត្រូវដោះស្រាយ។
1,-42 2,-21 3,-14 6,-7
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន ចំនួនអវិជ្ជមានមានតម្លៃដាច់ខាតធំជាងចំនួនវិជ្ជមាន។ រាយឈ្មោះគូទាំងអស់ដែលផ្ដល់នូវផលគុណ -42។
1-42=-41 2-21=-19 3-14=-11 6-7=-1
គណនីផលបូកសម្រាប់គូនីមួយៗ។
a=-7 b=6
ចម្លើយគឺជាគូ ដែលផ្ដល់នូវផលបូក -1 ។
\left(21x^{2}-7x\right)+\left(6x-2\right)
សរសេរ 21x^{2}-x-2 ឡើងវិញជា \left(21x^{2}-7x\right)+\left(6x-2\right)។
7x\left(3x-1\right)+2\left(3x-1\right)
ដាក់ជាកត្តា 7x នៅក្នុងក្រុមទីមួយ និង 2 ក្រុមទីពីរចេញ។
\left(3x-1\right)\left(7x+2\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា 3x-1 ដោយប្រើលក្ខណៈបំបែក។
21x^{2}-x-2=0
ពហុធាកាដ្រាទីកអាចត្រូវបានដាក់ជាកត្តាដោយប្រើការបម្លែង ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ដែល x_{1} និង x_{2} គឺជាចម្លើយនៃសមីការរកាដ្រាទីក ax^{2}+bx+c=0។
x=\frac{-\left(-1\right)±\sqrt{1-4\times 21\left(-2\right)}}{2\times 21}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-\left(-1\right)±\sqrt{1-84\left(-2\right)}}{2\times 21}
គុណ -4 ដង 21។
x=\frac{-\left(-1\right)±\sqrt{1+168}}{2\times 21}
គុណ -84 ដង -2។
x=\frac{-\left(-1\right)±\sqrt{169}}{2\times 21}
បូក 1 ជាមួយ 168។
x=\frac{-\left(-1\right)±13}{2\times 21}
យកឬសការ៉េនៃ 169។
x=\frac{1±13}{2\times 21}
ភាពផ្ទុយគ្នានៃ -1 គឺ 1។
x=\frac{1±13}{42}
គុណ 2 ដង 21។
x=\frac{14}{42}
ឥឡូវដោះស្រាយសមីការរ x=\frac{1±13}{42} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 1 ជាមួយ 13។
x=\frac{1}{3}
កាត់បន្ថយប្រភាគ \frac{14}{42} ទៅតួដែលតូចបំផុតដោយដក និងលុបចេញ 14។
x=-\frac{12}{42}
ឥឡូវដោះស្រាយសមីការរ x=\frac{1±13}{42} នៅពេល ± គឺជាសញ្ញាដក។ ដក 13 ពី 1។
x=-\frac{2}{7}
កាត់បន្ថយប្រភាគ \frac{-12}{42} ទៅតួដែលតូចបំផុតដោយដក និងលុបចេញ 6។
21x^{2}-x-2=21\left(x-\frac{1}{3}\right)\left(x-\left(-\frac{2}{7}\right)\right)
ដាក់កន្សោមដើមដាក់ជាកត្តាដោយប្រើ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)។ ជំនួស \frac{1}{3} សម្រាប់ x_{1} និង -\frac{2}{7} សម្រាប់ x_{2}។
21x^{2}-x-2=21\left(x-\frac{1}{3}\right)\left(x+\frac{2}{7}\right)
សម្រួលកន្សោមទាំងអស់នៃទម្រង់ p-\left(-q\right) ទៅ p+q។
21x^{2}-x-2=21\times \frac{3x-1}{3}\left(x+\frac{2}{7}\right)
ដក \frac{1}{3} ពី x ដោយការរកភាគបែងរួម ហើយដកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅចំនួនដែលទាបបំផុត បើអាចធ្វើបាន។
21x^{2}-x-2=21\times \frac{3x-1}{3}\times \frac{7x+2}{7}
បូក \frac{2}{7} ជាមួយ x ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
21x^{2}-x-2=21\times \frac{\left(3x-1\right)\left(7x+2\right)}{3\times 7}
គុណ \frac{3x-1}{3} ដង \frac{7x+2}{7} ដោយការគុណភាគយកចំនួនដងនៃភាគយក និងភាគបែងចំនួនដងនៃភាគបែង។ បន្ទាប់មកបន្ថយប្រភាគទៅតួទាបបំផុត បើអាចធ្វើបាន។
21x^{2}-x-2=21\times \frac{\left(3x-1\right)\left(7x+2\right)}{21}
គុណ 3 ដង 7។
21x^{2}-x-2=\left(3x-1\right)\left(7x+2\right)
សម្រួល 21 ដែលជាកត្តារួមធំបំផុតរវាង 21 និង 21។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}