ដោះស្រាយសម្រាប់ x (complex solution)
x=-\sqrt{3}i+1\approx 1-1.732050808i
x=-2
x=1+\sqrt{3}i\approx 1+1.732050808i
x = -\frac{7}{2} = -3\frac{1}{2} = -3.5
ដោះស្រាយសម្រាប់ x
x = -\frac{7}{2} = -3\frac{1}{2} = -3.5
x=-2
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
±28,±56,±14,±7,±4,±8,±\frac{7}{2},±2,±1,±\frac{1}{2}
តាមទ្រឹស្ដីបទឬសសនិទាន គ្រប់ឬសសនិទានទាំងអស់នៃពហុធាគឺមានទម្រង់ \frac{p}{q} ដែល p ចែកតួថេរ 56 ហើយ q ចែកមេគុណនាំមុខ 2។ រាយឈ្មោះបេក្ខជនទាំងអស់ \frac{p}{q}។
x=-2
រកឫសគល់បែបនេះដោយសាកល្បងតម្លៃចំនួនគត់ទាំងអស់ដោយចាប់ផ្តើមពីតូចបំផុតដោយតម្លៃដាច់ខាត។ ប្រសិនបើរកមិនឃើញឫសចំនួនគត់សូមសាកល្បងប្រភាគ។
2x^{3}+3x^{2}-6x+28=0
ទ្រឹស្ដីបទនៃផលគុណកត្តា x-k គឺជាកត្តានៃពហុធាសម្រាប់ k ឬសនីមួយៗ។ ចែក 2x^{4}+7x^{3}+16x+56 នឹង x+2 ដើម្បីបាន2x^{3}+3x^{2}-6x+28។ ដោះស្រាយសមីការដែលលទ្ធផលស្មើ 0។
±14,±28,±7,±\frac{7}{2},±2,±4,±1,±\frac{1}{2}
តាមទ្រឹស្ដីបទឬសសនិទាន គ្រប់ឬសសនិទានទាំងអស់នៃពហុធាគឺមានទម្រង់ \frac{p}{q} ដែល p ចែកតួថេរ 28 ហើយ q ចែកមេគុណនាំមុខ 2។ រាយឈ្មោះបេក្ខជនទាំងអស់ \frac{p}{q}។
x=-\frac{7}{2}
រកឫសគល់បែបនេះដោយសាកល្បងតម្លៃចំនួនគត់ទាំងអស់ដោយចាប់ផ្តើមពីតូចបំផុតដោយតម្លៃដាច់ខាត។ ប្រសិនបើរកមិនឃើញឫសចំនួនគត់សូមសាកល្បងប្រភាគ។
x^{2}-2x+4=0
ទ្រឹស្ដីបទនៃផលគុណកត្តា x-k គឺជាកត្តានៃពហុធាសម្រាប់ k ឬសនីមួយៗ។ ចែក 2x^{3}+3x^{2}-6x+28 នឹង 2\left(x+\frac{7}{2}\right)=2x+7 ដើម្បីបានx^{2}-2x+4។ ដោះស្រាយសមីការដែលលទ្ធផលស្មើ 0។
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\times 4}}{2}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយប្រើរូបមន្តដឺក្រេទីពីរ៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ ជំនួស 1 សម្រាប់ a, -2 សម្រាប់ b និង 4 សម្រាប់ c នៅក្នុងរូបមន្ដដឺក្រេទីពីរ។
x=\frac{2±\sqrt{-12}}{2}
ធ្វើការគណនា។
x=-\sqrt{3}i+1 x=1+\sqrt{3}i
ដោះស្រាយសមីការ x^{2}-2x+4=0 នៅពេល ± គឺជាប្រមាណវិធីបូក និងនៅពេល ± គឺជាប្រមាណវិធីដក។
x=-2 x=-\frac{7}{2} x=-\sqrt{3}i+1 x=1+\sqrt{3}i
រាយដំណោះស្រាយដែលបានរកឃើញទាំងអស់។
±28,±56,±14,±7,±4,±8,±\frac{7}{2},±2,±1,±\frac{1}{2}
តាមទ្រឹស្ដីបទឬសសនិទាន គ្រប់ឬសសនិទានទាំងអស់នៃពហុធាគឺមានទម្រង់ \frac{p}{q} ដែល p ចែកតួថេរ 56 ហើយ q ចែកមេគុណនាំមុខ 2។ រាយឈ្មោះបេក្ខជនទាំងអស់ \frac{p}{q}។
x=-2
រកឫសគល់បែបនេះដោយសាកល្បងតម្លៃចំនួនគត់ទាំងអស់ដោយចាប់ផ្តើមពីតូចបំផុតដោយតម្លៃដាច់ខាត។ ប្រសិនបើរកមិនឃើញឫសចំនួនគត់សូមសាកល្បងប្រភាគ។
2x^{3}+3x^{2}-6x+28=0
ទ្រឹស្ដីបទនៃផលគុណកត្តា x-k គឺជាកត្តានៃពហុធាសម្រាប់ k ឬសនីមួយៗ។ ចែក 2x^{4}+7x^{3}+16x+56 នឹង x+2 ដើម្បីបាន2x^{3}+3x^{2}-6x+28។ ដោះស្រាយសមីការដែលលទ្ធផលស្មើ 0។
±14,±28,±7,±\frac{7}{2},±2,±4,±1,±\frac{1}{2}
តាមទ្រឹស្ដីបទឬសសនិទាន គ្រប់ឬសសនិទានទាំងអស់នៃពហុធាគឺមានទម្រង់ \frac{p}{q} ដែល p ចែកតួថេរ 28 ហើយ q ចែកមេគុណនាំមុខ 2។ រាយឈ្មោះបេក្ខជនទាំងអស់ \frac{p}{q}។
x=-\frac{7}{2}
រកឫសគល់បែបនេះដោយសាកល្បងតម្លៃចំនួនគត់ទាំងអស់ដោយចាប់ផ្តើមពីតូចបំផុតដោយតម្លៃដាច់ខាត។ ប្រសិនបើរកមិនឃើញឫសចំនួនគត់សូមសាកល្បងប្រភាគ។
x^{2}-2x+4=0
ទ្រឹស្ដីបទនៃផលគុណកត្តា x-k គឺជាកត្តានៃពហុធាសម្រាប់ k ឬសនីមួយៗ។ ចែក 2x^{3}+3x^{2}-6x+28 នឹង 2\left(x+\frac{7}{2}\right)=2x+7 ដើម្បីបានx^{2}-2x+4។ ដោះស្រាយសមីការដែលលទ្ធផលស្មើ 0។
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\times 4}}{2}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយប្រើរូបមន្តដឺក្រេទីពីរ៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ ជំនួស 1 សម្រាប់ a, -2 សម្រាប់ b និង 4 សម្រាប់ c នៅក្នុងរូបមន្ដដឺក្រេទីពីរ។
x=\frac{2±\sqrt{-12}}{2}
ធ្វើការគណនា។
x\in \emptyset
មិនមានចម្លើយទេ ដោយសារតែឬសការេនៃចំនួនអវិជ្ជមានមិនត្រូវបានកំណត់នៅក្នុងកាយពិត។
x=-2 x=-\frac{7}{2}
រាយដំណោះស្រាយដែលបានរកឃើញទាំងអស់។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}