រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

a+b=-1 ab=2\left(-3\right)=-6
ដើម្បីដោះស្រាយ​សមីការ សូមដាក់ផ្នែកខាងឆ្វេង​ដាក់ជាកត្តា​ដោយការដាក់ជាក្រុម។ ដំបូង ផ្នែកខាងឆ្វេងត្រូវតែសរសេរឡើងវិញជា 2x^{2}+ax+bx-3។ ដើម្បីរក a និង b សូមបង្កើត​ប្រព័ន្ធដែល​ត្រូវដោះស្រាយ។
1,-6 2,-3
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន ចំនួនអវិជ្ជមានមានតម្លៃដាច់ខាតធំជាង​ចំនួនវិជ្ជមាន។ រាយ​ឈ្មោះគូ​ទាំងអស់ដែល​ផ្ដល់នូវផលគុណ -6។
1-6=-5 2-3=-1
គណនី​ផល​បូកសម្រាប់គូនីមួយៗ។
a=-3 b=2
ចម្លើយគឺជា​គូ ដែលផ្ដល់​នូវផលបូក -1 ។
\left(2x^{2}-3x\right)+\left(2x-3\right)
សរសេរ 2x^{2}-x-3 ឡើងវិញជា \left(2x^{2}-3x\right)+\left(2x-3\right)។
x\left(2x-3\right)+2x-3
ដាក់ជាកត្តា x នៅក្នុង 2x^{2}-3x។
\left(2x-3\right)\left(x+1\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា 2x-3 ដោយប្រើលក្ខណៈបំបែក។
x=\frac{3}{2} x=-1
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ 2x-3=0 និង x+1=0។
2x^{2}-x-3=0
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-3\right)}}{2\times 2}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 2 សម្រាប់ a, -1 សម្រាប់ b និង -3 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-3\right)}}{2\times 2}
គុណ -4 ដង 2។
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2\times 2}
គុណ -8 ដង -3។
x=\frac{-\left(-1\right)±\sqrt{25}}{2\times 2}
បូក 1 ជាមួយ 24។
x=\frac{-\left(-1\right)±5}{2\times 2}
យកឬសការ៉េនៃ 25។
x=\frac{1±5}{2\times 2}
ភាពផ្ទុយគ្នានៃ -1 គឺ 1។
x=\frac{1±5}{4}
គុណ 2 ដង 2។
x=\frac{6}{4}
ឥឡូវដោះស្រាយសមីការរ x=\frac{1±5}{4} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 1 ជាមួយ 5។
x=\frac{3}{2}
កាត់បន្ថយប្រភាគ \frac{6}{4} ទៅតួដែលតូចបំផុតដោយ​ដក និងលុបចេញ 2។
x=-\frac{4}{4}
ឥឡូវដោះស្រាយសមីការរ x=\frac{1±5}{4} នៅពេល ± គឺជាសញ្ញាដក។ ដក 5 ពី 1។
x=-1
ចែក -4 នឹង 4។
x=\frac{3}{2} x=-1
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
2x^{2}-x-3=0
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយ​ការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
2x^{2}-x-3-\left(-3\right)=-\left(-3\right)
បូក 3 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
2x^{2}-x=-\left(-3\right)
ការដក -3 ពីខ្លួនឯងនៅសល់ 0។
2x^{2}-x=3
ដក -3 ពី 0។
\frac{2x^{2}-x}{2}=\frac{3}{2}
ចែកជ្រុងទាំងពីនឹង 2។
x^{2}-\frac{1}{2}x=\frac{3}{2}
ការចែកនឹង 2 មិនធ្វើប្រមាណវិធីគុណនឹង 2 ឡើងវិញ។
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{3}{2}+\left(-\frac{1}{4}\right)^{2}
ចែក -\frac{1}{2} ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន -\frac{1}{4}។ បន្ទាប់មក​បូកការ៉េនៃ -\frac{1}{4} ជាមួយ​ជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{3}{2}+\frac{1}{16}
លើក -\frac{1}{4} ជាការ៉េដោយលើកជាការ៉េទាំងភាគយក និងភាគបែងនៃប្រភាគ។
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{25}{16}
បូក \frac{3}{2} ជាមួយ \frac{1}{16} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
\left(x-\frac{1}{4}\right)^{2}=\frac{25}{16}
ដាក់ជាកត្តា x^{2}-\frac{1}{2}x+\frac{1}{16} ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x-\frac{1}{4}=\frac{5}{4} x-\frac{1}{4}=-\frac{5}{4}
ផ្ទៀងផ្ទាត់។
x=\frac{3}{2} x=-1
បូក \frac{1}{4} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។