ដោះស្រាយសម្រាប់ x
x = \frac{\sqrt{177} + 11}{4} \approx 6.076033674
x=\frac{11-\sqrt{177}}{4}\approx -0.576033674
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
2x^{2}-7x-2-4x=5
ដក 4x ពីជ្រុងទាំងពីរ។
2x^{2}-11x-2=5
បន្សំ -7x និង -4x ដើម្បីបាន -11x។
2x^{2}-11x-2-5=0
ដក 5 ពីជ្រុងទាំងពីរ។
2x^{2}-11x-7=0
ដក 5 ពី -2 ដើម្បីបាន -7។
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 2\left(-7\right)}}{2\times 2}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 2 សម្រាប់ a, -11 សម្រាប់ b និង -7 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-\left(-11\right)±\sqrt{121-4\times 2\left(-7\right)}}{2\times 2}
ការ៉េ -11។
x=\frac{-\left(-11\right)±\sqrt{121-8\left(-7\right)}}{2\times 2}
គុណ -4 ដង 2។
x=\frac{-\left(-11\right)±\sqrt{121+56}}{2\times 2}
គុណ -8 ដង -7។
x=\frac{-\left(-11\right)±\sqrt{177}}{2\times 2}
បូក 121 ជាមួយ 56។
x=\frac{11±\sqrt{177}}{2\times 2}
ភាពផ្ទុយគ្នានៃ -11 គឺ 11។
x=\frac{11±\sqrt{177}}{4}
គុណ 2 ដង 2។
x=\frac{\sqrt{177}+11}{4}
ឥឡូវដោះស្រាយសមីការរ x=\frac{11±\sqrt{177}}{4} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 11 ជាមួយ \sqrt{177}។
x=\frac{11-\sqrt{177}}{4}
ឥឡូវដោះស្រាយសមីការរ x=\frac{11±\sqrt{177}}{4} នៅពេល ± គឺជាសញ្ញាដក។ ដក \sqrt{177} ពី 11។
x=\frac{\sqrt{177}+11}{4} x=\frac{11-\sqrt{177}}{4}
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
2x^{2}-7x-2-4x=5
ដក 4x ពីជ្រុងទាំងពីរ។
2x^{2}-11x-2=5
បន្សំ -7x និង -4x ដើម្បីបាន -11x។
2x^{2}-11x=5+2
បន្ថែម 2 ទៅជ្រុងទាំងពីរ។
2x^{2}-11x=7
បូក 5 និង 2 ដើម្បីបាន 7។
\frac{2x^{2}-11x}{2}=\frac{7}{2}
ចែកជ្រុងទាំងពីនឹង 2។
x^{2}-\frac{11}{2}x=\frac{7}{2}
ការចែកនឹង 2 មិនធ្វើប្រមាណវិធីគុណនឹង 2 ឡើងវិញ។
x^{2}-\frac{11}{2}x+\left(-\frac{11}{4}\right)^{2}=\frac{7}{2}+\left(-\frac{11}{4}\right)^{2}
ចែក -\frac{11}{2} ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន -\frac{11}{4}។ បន្ទាប់មកបូកការ៉េនៃ -\frac{11}{4} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}-\frac{11}{2}x+\frac{121}{16}=\frac{7}{2}+\frac{121}{16}
លើក -\frac{11}{4} ជាការ៉េដោយលើកជាការ៉េទាំងភាគយក និងភាគបែងនៃប្រភាគ។
x^{2}-\frac{11}{2}x+\frac{121}{16}=\frac{177}{16}
បូក \frac{7}{2} ជាមួយ \frac{121}{16} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
\left(x-\frac{11}{4}\right)^{2}=\frac{177}{16}
ដាក់ជាកត្តា x^{2}-\frac{11}{2}x+\frac{121}{16} ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x-\frac{11}{4}\right)^{2}}=\sqrt{\frac{177}{16}}
យកឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x-\frac{11}{4}=\frac{\sqrt{177}}{4} x-\frac{11}{4}=-\frac{\sqrt{177}}{4}
ផ្ទៀងផ្ទាត់។
x=\frac{\sqrt{177}+11}{4} x=\frac{11-\sqrt{177}}{4}
បូក \frac{11}{4} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}