រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

a+b=9 ab=2\times 7=14
ដើម្បីដោះស្រាយ​សមីការ សូមដាក់ផ្នែកខាងឆ្វេង​ដាក់ជាកត្តា​ដោយការដាក់ជាក្រុម។ ដំបូង ផ្នែកខាងឆ្វេងត្រូវតែសរសេរឡើងវិញជា 2x^{2}+ax+bx+7។ ដើម្បីរក a និង b សូមបង្កើត​ប្រព័ន្ធដែល​ត្រូវដោះស្រាយ។
1,14 2,7
ដោយសារ ab ជាចំនួនវិជ្ជមាន a និង b មានសញ្ញាដូចគ្នា។ ដោយសារ a+b ជាចំនួនវិជ្ជមាន a ហើយ b ជាចំនួនវិជ្ជមានទាំងពីរ។ រាយ​ឈ្មោះគូ​ទាំងអស់ដែល​ផ្ដល់នូវផលគុណ 14។
1+14=15 2+7=9
គណនី​ផល​បូកសម្រាប់គូនីមួយៗ។
a=2 b=7
ចម្លើយគឺជា​គូ ដែលផ្ដល់​នូវផលបូក 9 ។
\left(2x^{2}+2x\right)+\left(7x+7\right)
សរសេរ 2x^{2}+9x+7 ឡើងវិញជា \left(2x^{2}+2x\right)+\left(7x+7\right)។
2x\left(x+1\right)+7\left(x+1\right)
ដាក់ជាកត្តា 2x នៅក្នុងក្រុមទីមួយ និង 7 ក្រុមទីពីរចេញ។
\left(x+1\right)\left(2x+7\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា x+1 ដោយប្រើលក្ខណៈបំបែក។
x=-1 x=-\frac{7}{2}
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ x+1=0 និង 2x+7=0។
2x^{2}+9x+7=0
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-9±\sqrt{9^{2}-4\times 2\times 7}}{2\times 2}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 2 សម្រាប់ a, 9 សម្រាប់ b និង 7 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-9±\sqrt{81-4\times 2\times 7}}{2\times 2}
ការ៉េ 9។
x=\frac{-9±\sqrt{81-8\times 7}}{2\times 2}
គុណ -4 ដង 2។
x=\frac{-9±\sqrt{81-56}}{2\times 2}
គុណ -8 ដង 7។
x=\frac{-9±\sqrt{25}}{2\times 2}
បូក 81 ជាមួយ -56។
x=\frac{-9±5}{2\times 2}
យកឬសការ៉េនៃ 25។
x=\frac{-9±5}{4}
គុណ 2 ដង 2។
x=-\frac{4}{4}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-9±5}{4} នៅពេល ± គឺជាសញ្ញាបូក។ បូក -9 ជាមួយ 5។
x=-1
ចែក -4 នឹង 4។
x=-\frac{14}{4}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-9±5}{4} នៅពេល ± គឺជាសញ្ញាដក។ ដក 5 ពី -9។
x=-\frac{7}{2}
កាត់បន្ថយប្រភាគ \frac{-14}{4} ទៅតួដែលតូចបំផុតដោយ​ដក និងលុបចេញ 2។
x=-1 x=-\frac{7}{2}
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
2x^{2}+9x+7=0
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយ​ការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
2x^{2}+9x+7-7=-7
ដក 7 ពីជ្រុងទាំងពីរនៃសមីការរ។
2x^{2}+9x=-7
ការដក 7 ពីខ្លួនឯងនៅសល់ 0។
\frac{2x^{2}+9x}{2}=-\frac{7}{2}
ចែកជ្រុងទាំងពីនឹង 2។
x^{2}+\frac{9}{2}x=-\frac{7}{2}
ការចែកនឹង 2 មិនធ្វើប្រមាណវិធីគុណនឹង 2 ឡើងវិញ។
x^{2}+\frac{9}{2}x+\left(\frac{9}{4}\right)^{2}=-\frac{7}{2}+\left(\frac{9}{4}\right)^{2}
ចែក \frac{9}{2} ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន \frac{9}{4}។ បន្ទាប់មក​បូកការ៉េនៃ \frac{9}{4} ជាមួយ​ជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}+\frac{9}{2}x+\frac{81}{16}=-\frac{7}{2}+\frac{81}{16}
លើក \frac{9}{4} ជាការ៉េដោយលើកជាការ៉េទាំងភាគយក និងភាគបែងនៃប្រភាគ។
x^{2}+\frac{9}{2}x+\frac{81}{16}=\frac{25}{16}
បូក -\frac{7}{2} ជាមួយ \frac{81}{16} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
\left(x+\frac{9}{4}\right)^{2}=\frac{25}{16}
ដាក់ជាកត្តា x^{2}+\frac{9}{2}x+\frac{81}{16} ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x+\frac{9}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x+\frac{9}{4}=\frac{5}{4} x+\frac{9}{4}=-\frac{5}{4}
ផ្ទៀងផ្ទាត់។
x=-1 x=-\frac{7}{2}
ដក \frac{9}{4} ពីជ្រុងទាំងពីរនៃសមីការរ។