រំលងទៅមាតិកាមេ
ដាក់ជាកត្តា
Tick mark Image
វាយតម្លៃ
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

a+b=7 ab=2\left(-30\right)=-60
ដាក់ជាកត្តានូវកន្សោម​ដោយដាក់ជាក្រុម។ ដំបូង​ កន្សោម​ត្រូវតែសរសេរឡើងវិញជា 2x^{2}+ax+bx-30។ ដើម្បីរក a និង b សូមបង្កើត​ប្រព័ន្ធដែល​ត្រូវដោះស្រាយ។
-1,60 -2,30 -3,20 -4,15 -5,12 -6,10
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនវិជ្ជមាន ចំនួនវិជ្ជមានមានតម្លៃដាច់ខាតធំជាង​ចំនួនអវិជ្ជមាន។ រាយ​ឈ្មោះគូ​ទាំងអស់ដែល​ផ្ដល់នូវផលគុណ -60។
-1+60=59 -2+30=28 -3+20=17 -4+15=11 -5+12=7 -6+10=4
គណនី​ផល​បូកសម្រាប់គូនីមួយៗ។
a=-5 b=12
ចម្លើយគឺជា​គូ ដែលផ្ដល់​នូវផលបូក 7 ។
\left(2x^{2}-5x\right)+\left(12x-30\right)
សរសេរ 2x^{2}+7x-30 ឡើងវិញជា \left(2x^{2}-5x\right)+\left(12x-30\right)។
x\left(2x-5\right)+6\left(2x-5\right)
ដាក់ជាកត្តា x នៅក្នុងក្រុមទីមួយ និង 6 ក្រុមទីពីរចេញ។
\left(2x-5\right)\left(x+6\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា 2x-5 ដោយប្រើលក្ខណៈបំបែក។
2x^{2}+7x-30=0
ពហុធាកាដ្រាទីកអាចត្រូវបានដាក់ជាកត្តាដោយប្រើការបម្លែង ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ដែល x_{1} និង x_{2} គឺជា​ចម្លើយនៃ​សមីការរកាដ្រាទីក ax^{2}+bx+c=0។
x=\frac{-7±\sqrt{7^{2}-4\times 2\left(-30\right)}}{2\times 2}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-7±\sqrt{49-4\times 2\left(-30\right)}}{2\times 2}
ការ៉េ 7។
x=\frac{-7±\sqrt{49-8\left(-30\right)}}{2\times 2}
គុណ -4 ដង 2។
x=\frac{-7±\sqrt{49+240}}{2\times 2}
គុណ -8 ដង -30។
x=\frac{-7±\sqrt{289}}{2\times 2}
បូក 49 ជាមួយ 240។
x=\frac{-7±17}{2\times 2}
យកឬសការ៉េនៃ 289។
x=\frac{-7±17}{4}
គុណ 2 ដង 2។
x=\frac{10}{4}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-7±17}{4} នៅពេល ± គឺជាសញ្ញាបូក។ បូក -7 ជាមួយ 17។
x=\frac{5}{2}
កាត់បន្ថយប្រភាគ \frac{10}{4} ទៅតួដែលតូចបំផុតដោយ​ដក និងលុបចេញ 2។
x=-\frac{24}{4}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-7±17}{4} នៅពេល ± គឺជាសញ្ញាដក។ ដក 17 ពី -7។
x=-6
ចែក -24 នឹង 4។
2x^{2}+7x-30=2\left(x-\frac{5}{2}\right)\left(x-\left(-6\right)\right)
ដាក់កន្សោមដើមដាក់ជាកត្តា​ដោយប្រើ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)។ ជំនួស \frac{5}{2} សម្រាប់ x_{1} និង -6 សម្រាប់ x_{2}។
2x^{2}+7x-30=2\left(x-\frac{5}{2}\right)\left(x+6\right)
សម្រួលកន្សោមទាំងអស់នៃទម្រង់ p-\left(-q\right) ទៅ p+q។
2x^{2}+7x-30=2\times \frac{2x-5}{2}\left(x+6\right)
ដក \frac{5}{2} ពី x ដោយ​ការរក​ភាគបែងរួម ហើយដកភាគយក។ បន្ទាប់មកបន្ថយ​ប្រភាគ​ទៅចំនួនដែលទាបបំផុត បើអាចធ្វើបាន។
2x^{2}+7x-30=\left(2x-5\right)\left(x+6\right)
សម្រួល 2 ដែលជាកត្តារួមធំបំផុតរវាង 2 និង 2។