ដោះស្រាយសម្រាប់ x (complex solution)
x=\frac{\sqrt{2}i}{2}+1\approx 1+0.707106781i
x=-\frac{\sqrt{2}i}{2}+1\approx 1-0.707106781i
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
2x^{2}+3-4x=0
ដក 4x ពីជ្រុងទាំងពីរ។
2x^{2}-4x+3=0
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\times 3}}{2\times 2}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 2 សម្រាប់ a, -4 សម្រាប់ b និង 3 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\times 3}}{2\times 2}
ការ៉េ -4។
x=\frac{-\left(-4\right)±\sqrt{16-8\times 3}}{2\times 2}
គុណ -4 ដង 2។
x=\frac{-\left(-4\right)±\sqrt{16-24}}{2\times 2}
គុណ -8 ដង 3។
x=\frac{-\left(-4\right)±\sqrt{-8}}{2\times 2}
បូក 16 ជាមួយ -24។
x=\frac{-\left(-4\right)±2\sqrt{2}i}{2\times 2}
យកឬសការ៉េនៃ -8។
x=\frac{4±2\sqrt{2}i}{2\times 2}
ភាពផ្ទុយគ្នានៃ -4 គឺ 4។
x=\frac{4±2\sqrt{2}i}{4}
គុណ 2 ដង 2។
x=\frac{4+2\sqrt{2}i}{4}
ឥឡូវដោះស្រាយសមីការរ x=\frac{4±2\sqrt{2}i}{4} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 4 ជាមួយ 2i\sqrt{2}។
x=\frac{\sqrt{2}i}{2}+1
ចែក 4+2i\sqrt{2} នឹង 4។
x=\frac{-2\sqrt{2}i+4}{4}
ឥឡូវដោះស្រាយសមីការរ x=\frac{4±2\sqrt{2}i}{4} នៅពេល ± គឺជាសញ្ញាដក។ ដក 2i\sqrt{2} ពី 4។
x=-\frac{\sqrt{2}i}{2}+1
ចែក 4-2i\sqrt{2} នឹង 4។
x=\frac{\sqrt{2}i}{2}+1 x=-\frac{\sqrt{2}i}{2}+1
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
2x^{2}+3-4x=0
ដក 4x ពីជ្រុងទាំងពីរ។
2x^{2}-4x=-3
ដក 3 ពីជ្រុងទាំងពីរ។ អ្វីមួយដកសូន្យបានលទ្ធផលបដិសេធខ្លួនឯង។
\frac{2x^{2}-4x}{2}=-\frac{3}{2}
ចែកជ្រុងទាំងពីនឹង 2។
x^{2}+\left(-\frac{4}{2}\right)x=-\frac{3}{2}
ការចែកនឹង 2 មិនធ្វើប្រមាណវិធីគុណនឹង 2 ឡើងវិញ។
x^{2}-2x=-\frac{3}{2}
ចែក -4 នឹង 2។
x^{2}-2x+1=-\frac{3}{2}+1
ចែក -2 ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន -1។ បន្ទាប់មកបូកការ៉េនៃ -1 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}-2x+1=-\frac{1}{2}
បូក -\frac{3}{2} ជាមួយ 1។
\left(x-1\right)^{2}=-\frac{1}{2}
ដាក់ជាកត្តា x^{2}-2x+1 ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x-1\right)^{2}}=\sqrt{-\frac{1}{2}}
យកឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x-1=\frac{\sqrt{2}i}{2} x-1=-\frac{\sqrt{2}i}{2}
ផ្ទៀងផ្ទាត់។
x=\frac{\sqrt{2}i}{2}+1 x=-\frac{\sqrt{2}i}{2}+1
បូក 1 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}