រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ a
Tick mark Image

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

a^{2}-6a+9=0
ចែកជ្រុងទាំងពីនឹង 2។
a+b=-6 ab=1\times 9=9
ដើម្បីដោះស្រាយ​សមីការ សូមដាក់ផ្នែកខាងឆ្វេង​ដាក់ជាកត្តា​ដោយការដាក់ជាក្រុម។ ដំបូង ផ្នែកខាងឆ្វេងត្រូវតែសរសេរឡើងវិញជា a^{2}+aa+ba+9។ ដើម្បីរក a និង b សូមបង្កើត​ប្រព័ន្ធដែល​ត្រូវដោះស្រាយ។
-1,-9 -3,-3
ដោយសារ ab ជាចំនួនវិជ្ជមាន a និង b មានសញ្ញាដូចគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន a ហើយ b ជាចំនួនអវិជ្ជមានទាំងពីរ។ រាយ​ឈ្មោះគូ​ទាំងអស់ដែល​ផ្ដល់នូវផលគុណ 9។
-1-9=-10 -3-3=-6
គណនី​ផល​បូកសម្រាប់គូនីមួយៗ។
a=-3 b=-3
ចម្លើយគឺជា​គូ ដែលផ្ដល់​នូវផលបូក -6 ។
\left(a^{2}-3a\right)+\left(-3a+9\right)
សរសេរ a^{2}-6a+9 ឡើងវិញជា \left(a^{2}-3a\right)+\left(-3a+9\right)។
a\left(a-3\right)-3\left(a-3\right)
ដាក់ជាកត្តា a នៅក្នុងក្រុមទីមួយ និង -3 ក្រុមទីពីរចេញ។
\left(a-3\right)\left(a-3\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា a-3 ដោយប្រើលក្ខណៈបំបែក។
\left(a-3\right)^{2}
សរសេរឡើងវិញជាការ៉េទ្វេរធា។
a=3
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ a-3=0 ។
2a^{2}-12a+18=0
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
a=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 2\times 18}}{2\times 2}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 2 សម្រាប់ a, -12 សម្រាប់ b និង 18 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
a=\frac{-\left(-12\right)±\sqrt{144-4\times 2\times 18}}{2\times 2}
ការ៉េ -12។
a=\frac{-\left(-12\right)±\sqrt{144-8\times 18}}{2\times 2}
គុណ -4 ដង 2។
a=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 2}
គុណ -8 ដង 18។
a=\frac{-\left(-12\right)±\sqrt{0}}{2\times 2}
បូក 144 ជាមួយ -144។
a=-\frac{-12}{2\times 2}
យកឬសការ៉េនៃ 0។
a=\frac{12}{2\times 2}
ភាពផ្ទុយគ្នានៃ -12 គឺ 12។
a=\frac{12}{4}
គុណ 2 ដង 2។
a=3
ចែក 12 នឹង 4។
2a^{2}-12a+18=0
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយ​ការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
2a^{2}-12a+18-18=-18
ដក 18 ពីជ្រុងទាំងពីរនៃសមីការរ។
2a^{2}-12a=-18
ការដក 18 ពីខ្លួនឯងនៅសល់ 0។
\frac{2a^{2}-12a}{2}=-\frac{18}{2}
ចែកជ្រុងទាំងពីនឹង 2។
a^{2}+\left(-\frac{12}{2}\right)a=-\frac{18}{2}
ការចែកនឹង 2 មិនធ្វើប្រមាណវិធីគុណនឹង 2 ឡើងវិញ។
a^{2}-6a=-\frac{18}{2}
ចែក -12 នឹង 2។
a^{2}-6a=-9
ចែក -18 នឹង 2។
a^{2}-6a+\left(-3\right)^{2}=-9+\left(-3\right)^{2}
ចែក -6 ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន -3។ បន្ទាប់មក​បូកការ៉េនៃ -3 ជាមួយ​ជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
a^{2}-6a+9=-9+9
ការ៉េ -3។
a^{2}-6a+9=0
បូក -9 ជាមួយ 9។
\left(a-3\right)^{2}=0
ដាក់ជាកត្តា a^{2}-6a+9 ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(a-3\right)^{2}}=\sqrt{0}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
a-3=0 a-3=0
ផ្ទៀងផ្ទាត់។
a=3 a=3
បូក 3 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
a=3
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។ ចម្លើយគឺដូចគ្នា។