ដោះស្រាយសម្រាប់ x
x=\frac{1}{2}=0.5
x=3
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
2x^{2}-7x+3=0
បន្សំ -3x និង -4x ដើម្បីបាន -7x។
a+b=-7 ab=2\times 3=6
ដើម្បីដោះស្រាយសមីការ សូមដាក់ផ្នែកខាងឆ្វេងដាក់ជាកត្តាដោយការដាក់ជាក្រុម។ ដំបូង ផ្នែកខាងឆ្វេងត្រូវតែសរសេរឡើងវិញជា 2x^{2}+ax+bx+3។ ដើម្បីរក a និង b សូមបង្កើតប្រព័ន្ធដែលត្រូវដោះស្រាយ។
-1,-6 -2,-3
ដោយសារ ab ជាចំនួនវិជ្ជមាន a និង b មានសញ្ញាដូចគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន a ហើយ b ជាចំនួនអវិជ្ជមានទាំងពីរ។ រាយឈ្មោះគូទាំងអស់ដែលផ្ដល់នូវផលគុណ 6។
-1-6=-7 -2-3=-5
គណនីផលបូកសម្រាប់គូនីមួយៗ។
a=-6 b=-1
ចម្លើយគឺជាគូ ដែលផ្ដល់នូវផលបូក -7 ។
\left(2x^{2}-6x\right)+\left(-x+3\right)
សរសេរ 2x^{2}-7x+3 ឡើងវិញជា \left(2x^{2}-6x\right)+\left(-x+3\right)។
2x\left(x-3\right)-\left(x-3\right)
ដាក់ជាកត្តា 2x នៅក្នុងក្រុមទីមួយ និង -1 ក្រុមទីពីរចេញ។
\left(x-3\right)\left(2x-1\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា x-3 ដោយប្រើលក្ខណៈបំបែក។
x=3 x=\frac{1}{2}
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ x-3=0 និង 2x-1=0។
2x^{2}-7x+3=0
បន្សំ -3x និង -4x ដើម្បីបាន -7x។
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 2\times 3}}{2\times 2}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស 2 សម្រាប់ a, -7 សម្រាប់ b និង 3 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-\left(-7\right)±\sqrt{49-4\times 2\times 3}}{2\times 2}
ការ៉េ -7។
x=\frac{-\left(-7\right)±\sqrt{49-8\times 3}}{2\times 2}
គុណ -4 ដង 2។
x=\frac{-\left(-7\right)±\sqrt{49-24}}{2\times 2}
គុណ -8 ដង 3។
x=\frac{-\left(-7\right)±\sqrt{25}}{2\times 2}
បូក 49 ជាមួយ -24។
x=\frac{-\left(-7\right)±5}{2\times 2}
យកឬសការ៉េនៃ 25។
x=\frac{7±5}{2\times 2}
ភាពផ្ទុយគ្នានៃ -7 គឺ 7។
x=\frac{7±5}{4}
គុណ 2 ដង 2។
x=\frac{12}{4}
ឥឡូវដោះស្រាយសមីការរ x=\frac{7±5}{4} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 7 ជាមួយ 5។
x=3
ចែក 12 នឹង 4។
x=\frac{2}{4}
ឥឡូវដោះស្រាយសមីការរ x=\frac{7±5}{4} នៅពេល ± គឺជាសញ្ញាដក។ ដក 5 ពី 7។
x=\frac{1}{2}
កាត់បន្ថយប្រភាគ \frac{2}{4} ទៅតួដែលតូចបំផុតដោយដក និងលុបចេញ 2។
x=3 x=\frac{1}{2}
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
2x^{2}-7x+3=0
បន្សំ -3x និង -4x ដើម្បីបាន -7x។
2x^{2}-7x=-3
ដក 3 ពីជ្រុងទាំងពីរ។ អ្វីមួយដកសូន្យបានលទ្ធផលបដិសេធខ្លួនឯង។
\frac{2x^{2}-7x}{2}=-\frac{3}{2}
ចែកជ្រុងទាំងពីនឹង 2។
x^{2}-\frac{7}{2}x=-\frac{3}{2}
ការចែកនឹង 2 មិនធ្វើប្រមាណវិធីគុណនឹង 2 ឡើងវិញ។
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=-\frac{3}{2}+\left(-\frac{7}{4}\right)^{2}
ចែក -\frac{7}{2} ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន -\frac{7}{4}។ បន្ទាប់មកបូកការ៉េនៃ -\frac{7}{4} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}-\frac{7}{2}x+\frac{49}{16}=-\frac{3}{2}+\frac{49}{16}
លើក -\frac{7}{4} ជាការ៉េដោយលើកជាការ៉េទាំងភាគយក និងភាគបែងនៃប្រភាគ។
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{25}{16}
បូក -\frac{3}{2} ជាមួយ \frac{49}{16} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
\left(x-\frac{7}{4}\right)^{2}=\frac{25}{16}
ដាក់ជាកត្តា x^{2}-\frac{7}{2}x+\frac{49}{16} ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
យកឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x-\frac{7}{4}=\frac{5}{4} x-\frac{7}{4}=-\frac{5}{4}
ផ្ទៀងផ្ទាត់។
x=3 x=\frac{1}{2}
បូក \frac{7}{4} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}