ដាក់ជាកត្តា
\left(2x-1\right)\left(8x+9\right)
វាយតម្លៃ
\left(2x-1\right)\left(8x+9\right)
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
a+b=10 ab=16\left(-9\right)=-144
ដាក់ជាកត្តានូវកន្សោមដោយដាក់ជាក្រុម។ ដំបូង កន្សោមត្រូវតែសរសេរឡើងវិញជា 16x^{2}+ax+bx-9។ ដើម្បីរក a និង b សូមបង្កើតប្រព័ន្ធដែលត្រូវដោះស្រាយ។
-1,144 -2,72 -3,48 -4,36 -6,24 -8,18 -9,16 -12,12
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនវិជ្ជមាន ចំនួនវិជ្ជមានមានតម្លៃដាច់ខាតធំជាងចំនួនអវិជ្ជមាន។ រាយឈ្មោះគូទាំងអស់ដែលផ្ដល់នូវផលគុណ -144។
-1+144=143 -2+72=70 -3+48=45 -4+36=32 -6+24=18 -8+18=10 -9+16=7 -12+12=0
គណនីផលបូកសម្រាប់គូនីមួយៗ។
a=-8 b=18
ចម្លើយគឺជាគូ ដែលផ្ដល់នូវផលបូក 10 ។
\left(16x^{2}-8x\right)+\left(18x-9\right)
សរសេរ 16x^{2}+10x-9 ឡើងវិញជា \left(16x^{2}-8x\right)+\left(18x-9\right)។
8x\left(2x-1\right)+9\left(2x-1\right)
ដាក់ជាកត្តា 8x នៅក្នុងក្រុមទីមួយ និង 9 ក្រុមទីពីរចេញ។
\left(2x-1\right)\left(8x+9\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា 2x-1 ដោយប្រើលក្ខណៈបំបែក។
16x^{2}+10x-9=0
ពហុធាកាដ្រាទីកអាចត្រូវបានដាក់ជាកត្តាដោយប្រើការបម្លែង ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ដែល x_{1} និង x_{2} គឺជាចម្លើយនៃសមីការរកាដ្រាទីក ax^{2}+bx+c=0។
x=\frac{-10±\sqrt{10^{2}-4\times 16\left(-9\right)}}{2\times 16}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-10±\sqrt{100-4\times 16\left(-9\right)}}{2\times 16}
ការ៉េ 10។
x=\frac{-10±\sqrt{100-64\left(-9\right)}}{2\times 16}
គុណ -4 ដង 16។
x=\frac{-10±\sqrt{100+576}}{2\times 16}
គុណ -64 ដង -9។
x=\frac{-10±\sqrt{676}}{2\times 16}
បូក 100 ជាមួយ 576។
x=\frac{-10±26}{2\times 16}
យកឬសការ៉េនៃ 676។
x=\frac{-10±26}{32}
គុណ 2 ដង 16។
x=\frac{16}{32}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-10±26}{32} នៅពេល ± គឺជាសញ្ញាបូក។ បូក -10 ជាមួយ 26។
x=\frac{1}{2}
កាត់បន្ថយប្រភាគ \frac{16}{32} ទៅតួដែលតូចបំផុតដោយដក និងលុបចេញ 16។
x=-\frac{36}{32}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-10±26}{32} នៅពេល ± គឺជាសញ្ញាដក។ ដក 26 ពី -10។
x=-\frac{9}{8}
កាត់បន្ថយប្រភាគ \frac{-36}{32} ទៅតួដែលតូចបំផុតដោយដក និងលុបចេញ 4។
16x^{2}+10x-9=16\left(x-\frac{1}{2}\right)\left(x-\left(-\frac{9}{8}\right)\right)
ដាក់កន្សោមដើមដាក់ជាកត្តាដោយប្រើ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)។ ជំនួស \frac{1}{2} សម្រាប់ x_{1} និង -\frac{9}{8} សម្រាប់ x_{2}។
16x^{2}+10x-9=16\left(x-\frac{1}{2}\right)\left(x+\frac{9}{8}\right)
សម្រួលកន្សោមទាំងអស់នៃទម្រង់ p-\left(-q\right) ទៅ p+q។
16x^{2}+10x-9=16\times \frac{2x-1}{2}\left(x+\frac{9}{8}\right)
ដក \frac{1}{2} ពី x ដោយការរកភាគបែងរួម ហើយដកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅចំនួនដែលទាបបំផុត បើអាចធ្វើបាន។
16x^{2}+10x-9=16\times \frac{2x-1}{2}\times \frac{8x+9}{8}
បូក \frac{9}{8} ជាមួយ x ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
16x^{2}+10x-9=16\times \frac{\left(2x-1\right)\left(8x+9\right)}{2\times 8}
គុណ \frac{2x-1}{2} ដង \frac{8x+9}{8} ដោយការគុណភាគយកចំនួនដងនៃភាគយក និងភាគបែងចំនួនដងនៃភាគបែង។ បន្ទាប់មកបន្ថយប្រភាគទៅតួទាបបំផុត បើអាចធ្វើបាន។
16x^{2}+10x-9=16\times \frac{\left(2x-1\right)\left(8x+9\right)}{16}
គុណ 2 ដង 8។
16x^{2}+10x-9=\left(2x-1\right)\left(8x+9\right)
សម្រួល 16 ដែលជាកត្តារួមធំបំផុតរវាង 16 និង 16។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}