ដាក់ជាកត្តា
\left(a-4\right)^{2}
វាយតម្លៃ
\left(a-4\right)^{2}
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
a^{2}-8a+16
តម្រៀបពហុធារសារឡើងវិញដើម្បីដាក់វានៅក្នុងទម្រង់ស្ដង់ដារ។ ដាក់តួតាមលំដាប់ពីស្វ័យគុណខ្ពស់បំផុតទៅទាបបំផុត។
p+q=-8 pq=1\times 16=16
ដាក់ជាកត្តានូវកន្សោមដោយដាក់ជាក្រុម។ ដំបូង កន្សោមត្រូវតែសរសេរឡើងវិញជា a^{2}+pa+qa+16។ ដើម្បីរក p និង q សូមបង្កើតប្រព័ន្ធដែលត្រូវដោះស្រាយ។
-1,-16 -2,-8 -4,-4
ដោយសារ pq ជាចំនួនវិជ្ជមាន p និង q មានសញ្ញាដូចគ្នា។ ដោយសារ p+q ជាចំនួនអវិជ្ជមាន p ហើយ q ជាចំនួនអវិជ្ជមានទាំងពីរ។ រាយឈ្មោះគូទាំងអស់ដែលផ្ដល់នូវផលគុណ 16។
-1-16=-17 -2-8=-10 -4-4=-8
គណនីផលបូកសម្រាប់គូនីមួយៗ។
p=-4 q=-4
ចម្លើយគឺជាគូ ដែលផ្ដល់នូវផលបូក -8 ។
\left(a^{2}-4a\right)+\left(-4a+16\right)
សរសេរ a^{2}-8a+16 ឡើងវិញជា \left(a^{2}-4a\right)+\left(-4a+16\right)។
a\left(a-4\right)-4\left(a-4\right)
ដាក់ជាកត្តា a នៅក្នុងក្រុមទីមួយ និង -4 ក្រុមទីពីរចេញ។
\left(a-4\right)\left(a-4\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា a-4 ដោយប្រើលក្ខណៈបំបែក។
\left(a-4\right)^{2}
សរសេរឡើងវិញជាការ៉េទ្វេរធា។
factor(a^{2}-8a+16)
ត្រីធានេះមានទម្រង់នៃការ៉េ ប្រហែលជាត្រូវបានគុណនឹងកត្តារួម។ ការ៉េត្រីធាអាចត្រូវបានដាក់ជាកត្តាដោយការរកឬសការ៉េនៃតួនាំមុខ និងតួខាងចុង។
\sqrt{16}=4
រកឬសការ៉េនៃតួខាងចុង 16។
\left(a-4\right)^{2}
ការ៉េត្រីធាគឺជាការ៉េនៃទ្វេរធាដែលជាផលបូក ឬផលដកនៃឬសការ៉េនៃតួនាំមុខ ឬតួខាងចុងដែលមានសញ្ញាកំណត់ដោយសញ្ញាតួកណ្ដាលនៃការ៉េត្រីធា។
a^{2}-8a+16=0
ពហុធាកាដ្រាទីកអាចត្រូវបានដាក់ជាកត្តាដោយប្រើការបម្លែង ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ដែល x_{1} និង x_{2} គឺជាចម្លើយនៃសមីការរកាដ្រាទីក ax^{2}+bx+c=0។
a=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 16}}{2}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
a=\frac{-\left(-8\right)±\sqrt{64-4\times 16}}{2}
ការ៉េ -8។
a=\frac{-\left(-8\right)±\sqrt{64-64}}{2}
គុណ -4 ដង 16។
a=\frac{-\left(-8\right)±\sqrt{0}}{2}
បូក 64 ជាមួយ -64។
a=\frac{-\left(-8\right)±0}{2}
យកឬសការ៉េនៃ 0។
a=\frac{8±0}{2}
ភាពផ្ទុយគ្នានៃ -8 គឺ 8។
a^{2}-8a+16=\left(a-4\right)\left(a-4\right)
ដាក់កន្សោមដើមដាក់ជាកត្តាដោយប្រើ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)។ ជំនួស 4 សម្រាប់ x_{1} និង 4 សម្រាប់ x_{2}។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}