រំលងទៅមាតិកាមេ
ដាក់ជាកត្តា
Tick mark Image
វាយតម្លៃ
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

5\left(3x^{2}+x\right)
ដាក់ជាកត្តា 5។
x\left(3x+1\right)
ពិនិត្យ 3x^{2}+x។ ដាក់ជាកត្តា x។
5x\left(3x+1\right)
សរសេរកន្សោមដែលបានដាក់ជាកត្តាពេញលេញឡើងវិញ។
15x^{2}+5x=0
ពហុធាកាដ្រាទីកអាចត្រូវបានដាក់ជាកត្តាដោយប្រើការបម្លែង ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ដែល x_{1} និង x_{2} គឺជា​ចម្លើយនៃ​សមីការរកាដ្រាទីក ax^{2}+bx+c=0។
x=\frac{-5±\sqrt{5^{2}}}{2\times 15}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-5±5}{2\times 15}
យកឬសការ៉េនៃ 5^{2}។
x=\frac{-5±5}{30}
គុណ 2 ដង 15។
x=\frac{0}{30}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-5±5}{30} នៅពេល ± គឺជាសញ្ញាបូក។ បូក -5 ជាមួយ 5។
x=0
ចែក 0 នឹង 30។
x=-\frac{10}{30}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-5±5}{30} នៅពេល ± គឺជាសញ្ញាដក។ ដក 5 ពី -5។
x=-\frac{1}{3}
កាត់បន្ថយប្រភាគ \frac{-10}{30} ទៅតួដែលតូចបំផុតដោយ​ដក និងលុបចេញ 10។
15x^{2}+5x=15x\left(x-\left(-\frac{1}{3}\right)\right)
ដាក់កន្សោមដើមដាក់ជាកត្តា​ដោយប្រើ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)។ ជំនួស 0 សម្រាប់ x_{1} និង -\frac{1}{3} សម្រាប់ x_{2}។
15x^{2}+5x=15x\left(x+\frac{1}{3}\right)
សម្រួលកន្សោមទាំងអស់នៃទម្រង់ p-\left(-q\right) ទៅ p+q។
15x^{2}+5x=15x\times \frac{3x+1}{3}
បូក \frac{1}{3} ជាមួយ x ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
15x^{2}+5x=5x\left(3x+1\right)
សម្រួល 3 ដែលជាកត្តារួមធំបំផុតរវាង 15 និង 3។