ដាក់ជាកត្តា
3x\left(x-2\right)\left(4x-5\right)
វាយតម្លៃ
3x\left(x-2\right)\left(4x-5\right)
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
3\left(4x^{3}-13x^{2}+10x\right)
ដាក់ជាកត្តា 3។
x\left(4x^{2}-13x+10\right)
ពិនិត្យ 4x^{3}-13x^{2}+10x។ ដាក់ជាកត្តា x។
a+b=-13 ab=4\times 10=40
ពិនិត្យ 4x^{2}-13x+10។ ដាក់ជាកត្តានូវកន្សោមដោយដាក់ជាក្រុម។ ដំបូង កន្សោមត្រូវតែសរសេរឡើងវិញជា 4x^{2}+ax+bx+10។ ដើម្បីរក a និង b សូមបង្កើតប្រព័ន្ធដែលត្រូវដោះស្រាយ។
-1,-40 -2,-20 -4,-10 -5,-8
ដោយសារ ab ជាចំនួនវិជ្ជមាន a និង b មានសញ្ញាដូចគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន a ហើយ b ជាចំនួនអវិជ្ជមានទាំងពីរ។ រាយឈ្មោះគូទាំងអស់ដែលផ្ដល់នូវផលគុណ 40។
-1-40=-41 -2-20=-22 -4-10=-14 -5-8=-13
គណនីផលបូកសម្រាប់គូនីមួយៗ។
a=-8 b=-5
ចម្លើយគឺជាគូ ដែលផ្ដល់នូវផលបូក -13 ។
\left(4x^{2}-8x\right)+\left(-5x+10\right)
សរសេរ 4x^{2}-13x+10 ឡើងវិញជា \left(4x^{2}-8x\right)+\left(-5x+10\right)។
4x\left(x-2\right)-5\left(x-2\right)
ដាក់ជាកត្តា 4x នៅក្នុងក្រុមទីមួយ និង -5 ក្រុមទីពីរចេញ។
\left(x-2\right)\left(4x-5\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា x-2 ដោយប្រើលក្ខណៈបំបែក។
3x\left(x-2\right)\left(4x-5\right)
សរសេរកន្សោមដែលបានដាក់ជាកត្តាពេញលេញឡើងវិញ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}