ដាក់ជាកត្តា
\left(c+1\right)\left(c^{22}-c^{21}+c^{20}-c^{19}+c^{18}-c^{17}+c^{16}-c^{15}+c^{14}-c^{13}+c^{12}-c^{11}+c^{10}-c^{9}+c^{8}-c^{7}+c^{6}-c^{5}+c^{4}-c^{3}+c^{2}-c+1\right)
វាយតម្លៃ
c^{23}+1
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
c^{23}+1
គុណ និងបន្សំតួដូចគ្នា។
\left(c+1\right)\left(c^{22}-c^{21}+c^{20}-c^{19}+c^{18}-c^{17}+c^{16}-c^{15}+c^{14}-c^{13}+c^{12}-c^{11}+c^{10}-c^{9}+c^{8}-c^{7}+c^{6}-c^{5}+c^{4}-c^{3}+c^{2}-c+1\right)
តាមទ្រឹស្ដីបទឬសសនិទាន គ្រប់ឬសសនិទានទាំងអស់នៃពហុធាគឺមានទម្រង់ \frac{p}{q} ដែល p ចែកតួថេរ 1 ហើយ q ចែកមេគុណនាំមុខ 1។ ឬសមួយនេះគឺជា -1។ ដាក់ជាកត្តាពហុធាដោយចែកវានឹង c+1។ ពហុធា c^{22}-c^{21}+c^{20}-c^{19}+c^{18}-c^{17}+c^{16}-c^{15}+c^{14}-c^{13}+c^{12}-c^{11}+c^{10}-c^{9}+c^{8}-c^{7}+c^{6}-c^{5}+c^{4}-c^{3}+c^{2}-c+1 មិនត្រូវបានដាក់ជាកត្តាទេ ដោយសារវាមិនមានឬសសនិទានណាមួយទេ។
1+c^{23}
គណនាស្វ័យគុណ 1 នៃ 2 ហើយបាន 1។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}