ដោះស្រាយសម្រាប់ x
x = \frac{6 \sqrt{2} + 6}{5} \approx 2.897056275
x=\frac{6-6\sqrt{2}}{5}\approx -0.497056275
x = -\frac{6}{5} = -1\frac{1}{5} = -1.2
ក្រាហ្វ
លំហាត់
Polynomial
បញ្ហា 5 ស្រដៀង គ្នា៖
0 ^ { 2 } = ( 25 x ^ { 2 } - 60 x - 36 ) ( 25 x ^ { 2 } + 60 x + 36 )
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
0=\left(25x^{2}-60x-36\right)\left(25x^{2}+60x+36\right)
គណនាស្វ័យគុណ 0 នៃ 2 ហើយបាន 0។
0=625x^{4}-3600x^{2}-4320x-1296
ប្រើលក្ខណៈបំបែកដើម្បីគុណ 25x^{2}-60x-36 នឹង 25x^{2}+60x+36 ហើយបន្សំដូចតួ។
625x^{4}-3600x^{2}-4320x-1296=0
ប្ដូរផ្នែកទាំងពីរ ដើម្បីឲ្យតួអថេរទាំងអស់ស្ថិតនៅផ្នែកខាងឆ្វេង។
±\frac{1296}{625},±\frac{1296}{125},±\frac{1296}{25},±\frac{1296}{5},±1296,±\frac{648}{625},±\frac{648}{125},±\frac{648}{25},±\frac{648}{5},±648,±\frac{432}{625},±\frac{432}{125},±\frac{432}{25},±\frac{432}{5},±432,±\frac{324}{625},±\frac{324}{125},±\frac{324}{25},±\frac{324}{5},±324,±\frac{216}{625},±\frac{216}{125},±\frac{216}{25},±\frac{216}{5},±216,±\frac{162}{625},±\frac{162}{125},±\frac{162}{25},±\frac{162}{5},±162,±\frac{144}{625},±\frac{144}{125},±\frac{144}{25},±\frac{144}{5},±144,±\frac{108}{625},±\frac{108}{125},±\frac{108}{25},±\frac{108}{5},±108,±\frac{81}{625},±\frac{81}{125},±\frac{81}{25},±\frac{81}{5},±81,±\frac{72}{625},±\frac{72}{125},±\frac{72}{25},±\frac{72}{5},±72,±\frac{54}{625},±\frac{54}{125},±\frac{54}{25},±\frac{54}{5},±54,±\frac{48}{625},±\frac{48}{125},±\frac{48}{25},±\frac{48}{5},±48,±\frac{36}{625},±\frac{36}{125},±\frac{36}{25},±\frac{36}{5},±36,±\frac{27}{625},±\frac{27}{125},±\frac{27}{25},±\frac{27}{5},±27,±\frac{24}{625},±\frac{24}{125},±\frac{24}{25},±\frac{24}{5},±24,±\frac{18}{625},±\frac{18}{125},±\frac{18}{25},±\frac{18}{5},±18,±\frac{16}{625},±\frac{16}{125},±\frac{16}{25},±\frac{16}{5},±16,±\frac{12}{625},±\frac{12}{125},±\frac{12}{25},±\frac{12}{5},±12,±\frac{9}{625},±\frac{9}{125},±\frac{9}{25},±\frac{9}{5},±9,±\frac{8}{625},±\frac{8}{125},±\frac{8}{25},±\frac{8}{5},±8,±\frac{6}{625},±\frac{6}{125},±\frac{6}{25},±\frac{6}{5},±6,±\frac{4}{625},±\frac{4}{125},±\frac{4}{25},±\frac{4}{5},±4,±\frac{3}{625},±\frac{3}{125},±\frac{3}{25},±\frac{3}{5},±3,±\frac{2}{625},±\frac{2}{125},±\frac{2}{25},±\frac{2}{5},±2,±\frac{1}{625},±\frac{1}{125},±\frac{1}{25},±\frac{1}{5},±1
តាមទ្រឹស្ដីបទឬសសនិទាន គ្រប់ឬសសនិទានទាំងអស់នៃពហុធាគឺមានទម្រង់ \frac{p}{q} ដែល p ចែកតួថេរ -1296 ហើយ q ចែកមេគុណនាំមុខ 625។ រាយឈ្មោះបេក្ខជនទាំងអស់ \frac{p}{q}។
x=-\frac{6}{5}
រកឫសគល់បែបនេះដោយសាកល្បងតម្លៃចំនួនគត់ទាំងអស់ដោយចាប់ផ្តើមពីតូចបំផុតដោយតម្លៃដាច់ខាត។ ប្រសិនបើរកមិនឃើញឫសចំនួនគត់សូមសាកល្បងប្រភាគ។
125x^{3}-150x^{2}-540x-216=0
ទ្រឹស្ដីបទនៃផលគុណកត្តា x-k គឺជាកត្តានៃពហុធាសម្រាប់ k ឬសនីមួយៗ។ ចែក 625x^{4}-3600x^{2}-4320x-1296 នឹង 5\left(x+\frac{6}{5}\right)=5x+6 ដើម្បីបាន125x^{3}-150x^{2}-540x-216។ ដោះស្រាយសមីការដែលលទ្ធផលស្មើ 0។
±\frac{216}{125},±\frac{216}{25},±\frac{216}{5},±216,±\frac{108}{125},±\frac{108}{25},±\frac{108}{5},±108,±\frac{72}{125},±\frac{72}{25},±\frac{72}{5},±72,±\frac{54}{125},±\frac{54}{25},±\frac{54}{5},±54,±\frac{36}{125},±\frac{36}{25},±\frac{36}{5},±36,±\frac{27}{125},±\frac{27}{25},±\frac{27}{5},±27,±\frac{24}{125},±\frac{24}{25},±\frac{24}{5},±24,±\frac{18}{125},±\frac{18}{25},±\frac{18}{5},±18,±\frac{12}{125},±\frac{12}{25},±\frac{12}{5},±12,±\frac{9}{125},±\frac{9}{25},±\frac{9}{5},±9,±\frac{8}{125},±\frac{8}{25},±\frac{8}{5},±8,±\frac{6}{125},±\frac{6}{25},±\frac{6}{5},±6,±\frac{4}{125},±\frac{4}{25},±\frac{4}{5},±4,±\frac{3}{125},±\frac{3}{25},±\frac{3}{5},±3,±\frac{2}{125},±\frac{2}{25},±\frac{2}{5},±2,±\frac{1}{125},±\frac{1}{25},±\frac{1}{5},±1
តាមទ្រឹស្ដីបទឬសសនិទាន គ្រប់ឬសសនិទានទាំងអស់នៃពហុធាគឺមានទម្រង់ \frac{p}{q} ដែល p ចែកតួថេរ -216 ហើយ q ចែកមេគុណនាំមុខ 125។ រាយឈ្មោះបេក្ខជនទាំងអស់ \frac{p}{q}។
x=-\frac{6}{5}
រកឫសគល់បែបនេះដោយសាកល្បងតម្លៃចំនួនគត់ទាំងអស់ដោយចាប់ផ្តើមពីតូចបំផុតដោយតម្លៃដាច់ខាត។ ប្រសិនបើរកមិនឃើញឫសចំនួនគត់សូមសាកល្បងប្រភាគ។
25x^{2}-60x-36=0
ទ្រឹស្ដីបទនៃផលគុណកត្តា x-k គឺជាកត្តានៃពហុធាសម្រាប់ k ឬសនីមួយៗ។ ចែក 125x^{3}-150x^{2}-540x-216 នឹង 5\left(x+\frac{6}{5}\right)=5x+6 ដើម្បីបាន25x^{2}-60x-36។ ដោះស្រាយសមីការដែលលទ្ធផលស្មើ 0។
x=\frac{-\left(-60\right)±\sqrt{\left(-60\right)^{2}-4\times 25\left(-36\right)}}{2\times 25}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយប្រើរូបមន្តដឺក្រេទីពីរ៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ ជំនួស 25 សម្រាប់ a, -60 សម្រាប់ b និង -36 សម្រាប់ c នៅក្នុងរូបមន្ដដឺក្រេទីពីរ។
x=\frac{60±60\sqrt{2}}{50}
ធ្វើការគណនា។
x=\frac{6-6\sqrt{2}}{5} x=\frac{6\sqrt{2}+6}{5}
ដោះស្រាយសមីការ 25x^{2}-60x-36=0 នៅពេល ± គឺជាប្រមាណវិធីបូក និងនៅពេល ± គឺជាប្រមាណវិធីដក។
x=-\frac{6}{5} x=\frac{6-6\sqrt{2}}{5} x=\frac{6\sqrt{2}+6}{5}
រាយដំណោះស្រាយដែលបានរកឃើញទាំងអស់។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}