ដោះស្រាយសម្រាប់ x (complex solution)
x=-\frac{\sqrt{10}i}{2}+1\approx 1-1.58113883i
x=\frac{\sqrt{10}i}{2}+1\approx 1+1.58113883i
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
-2x^{2}+4x-7=0
ប្ដូរផ្នែកទាំងពីរ ដើម្បីឲ្យតួអថេរទាំងអស់ស្ថិតនៅផ្នែកខាងឆ្វេង។
x=\frac{-4±\sqrt{4^{2}-4\left(-2\right)\left(-7\right)}}{2\left(-2\right)}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស -2 សម្រាប់ a, 4 សម្រាប់ b និង -7 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-4±\sqrt{16-4\left(-2\right)\left(-7\right)}}{2\left(-2\right)}
ការ៉េ 4។
x=\frac{-4±\sqrt{16+8\left(-7\right)}}{2\left(-2\right)}
គុណ -4 ដង -2។
x=\frac{-4±\sqrt{16-56}}{2\left(-2\right)}
គុណ 8 ដង -7។
x=\frac{-4±\sqrt{-40}}{2\left(-2\right)}
បូក 16 ជាមួយ -56។
x=\frac{-4±2\sqrt{10}i}{2\left(-2\right)}
យកឬសការ៉េនៃ -40។
x=\frac{-4±2\sqrt{10}i}{-4}
គុណ 2 ដង -2។
x=\frac{-4+2\sqrt{10}i}{-4}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-4±2\sqrt{10}i}{-4} នៅពេល ± គឺជាសញ្ញាបូក។ បូក -4 ជាមួយ 2i\sqrt{10}។
x=-\frac{\sqrt{10}i}{2}+1
ចែក -4+2i\sqrt{10} នឹង -4។
x=\frac{-2\sqrt{10}i-4}{-4}
ឥឡូវដោះស្រាយសមីការរ x=\frac{-4±2\sqrt{10}i}{-4} នៅពេល ± គឺជាសញ្ញាដក។ ដក 2i\sqrt{10} ពី -4។
x=\frac{\sqrt{10}i}{2}+1
ចែក -4-2i\sqrt{10} នឹង -4។
x=-\frac{\sqrt{10}i}{2}+1 x=\frac{\sqrt{10}i}{2}+1
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
-2x^{2}+4x-7=0
ប្ដូរផ្នែកទាំងពីរ ដើម្បីឲ្យតួអថេរទាំងអស់ស្ថិតនៅផ្នែកខាងឆ្វេង។
-2x^{2}+4x=7
បន្ថែម 7 ទៅជ្រុងទាំងពីរ។ អ្វីមួយបូកសូន្យបានខ្លួនឯង។
\frac{-2x^{2}+4x}{-2}=\frac{7}{-2}
ចែកជ្រុងទាំងពីនឹង -2។
x^{2}+\frac{4}{-2}x=\frac{7}{-2}
ការចែកនឹង -2 មិនធ្វើប្រមាណវិធីគុណនឹង -2 ឡើងវិញ។
x^{2}-2x=\frac{7}{-2}
ចែក 4 នឹង -2។
x^{2}-2x=-\frac{7}{2}
ចែក 7 នឹង -2។
x^{2}-2x+1=-\frac{7}{2}+1
ចែក -2 ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន -1។ បន្ទាប់មកបូកការ៉េនៃ -1 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}-2x+1=-\frac{5}{2}
បូក -\frac{7}{2} ជាមួយ 1។
\left(x-1\right)^{2}=-\frac{5}{2}
ដាក់ជាកត្តា x^{2}-2x+1 ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x-1\right)^{2}}=\sqrt{-\frac{5}{2}}
យកឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x-1=\frac{\sqrt{10}i}{2} x-1=-\frac{\sqrt{10}i}{2}
ផ្ទៀងផ្ទាត់។
x=\frac{\sqrt{10}i}{2}+1 x=-\frac{\sqrt{10}i}{2}+1
បូក 1 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}