រំលងទៅមាតិកាមេ
ដាក់ជាកត្តា
Tick mark Image
វាយតម្លៃ
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x^{2}-x-30
តម្រៀបពហុធារសារឡើងវិញ​ដើម្បីដាក់វានៅក្នុងទម្រង់ស្ដង់ដារ។ ដាក់តួតាមលំដាប់ពីស្វ័យគុណខ្ពស់បំផុតទៅទាបបំផុត។
a+b=-1 ab=1\left(-30\right)=-30
ដាក់ជាកត្តានូវកន្សោម​ដោយដាក់ជាក្រុម។ ដំបូង​ កន្សោម​ត្រូវតែសរសេរឡើងវិញជា x^{2}+ax+bx-30។ ដើម្បីរក a និង b សូមបង្កើត​ប្រព័ន្ធដែល​ត្រូវដោះស្រាយ។
1,-30 2,-15 3,-10 5,-6
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន ចំនួនអវិជ្ជមានមានតម្លៃដាច់ខាតធំជាង​ចំនួនវិជ្ជមាន។ រាយ​ឈ្មោះគូ​ទាំងអស់ដែល​ផ្ដល់នូវផលគុណ -30។
1-30=-29 2-15=-13 3-10=-7 5-6=-1
គណនី​ផល​បូកសម្រាប់គូនីមួយៗ។
a=-6 b=5
ចម្លើយគឺជា​គូ ដែលផ្ដល់​នូវផលបូក -1 ។
\left(x^{2}-6x\right)+\left(5x-30\right)
សរសេរ x^{2}-x-30 ឡើងវិញជា \left(x^{2}-6x\right)+\left(5x-30\right)។
x\left(x-6\right)+5\left(x-6\right)
ដាក់ជាកត្តា x នៅក្នុងក្រុមទីមួយ និង 5 ក្រុមទីពីរចេញ។
\left(x-6\right)\left(x+5\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា x-6 ដោយប្រើលក្ខណៈបំបែក។
x^{2}-x-30=0
ពហុធាកាដ្រាទីកអាចត្រូវបានដាក់ជាកត្តាដោយប្រើការបម្លែង ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ដែល x_{1} និង x_{2} គឺជា​ចម្លើយនៃ​សមីការរកាដ្រាទីក ax^{2}+bx+c=0។
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-30\right)}}{2}
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-\left(-1\right)±\sqrt{1+120}}{2}
គុណ -4 ដង -30។
x=\frac{-\left(-1\right)±\sqrt{121}}{2}
បូក 1 ជាមួយ 120។
x=\frac{-\left(-1\right)±11}{2}
យកឬសការ៉េនៃ 121។
x=\frac{1±11}{2}
ភាពផ្ទុយគ្នានៃ -1 គឺ 1។
x=\frac{12}{2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{1±11}{2} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 1 ជាមួយ 11។
x=6
ចែក 12 នឹង 2។
x=-\frac{10}{2}
ឥឡូវដោះស្រាយសមីការរ x=\frac{1±11}{2} នៅពេល ± គឺជាសញ្ញាដក។ ដក 11 ពី 1។
x=-5
ចែក -10 នឹង 2។
x^{2}-x-30=\left(x-6\right)\left(x-\left(-5\right)\right)
ដាក់កន្សោមដើមដាក់ជាកត្តា​ដោយប្រើ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)។ ជំនួស 6 សម្រាប់ x_{1} និង -5 សម្រាប់ x_{2}។
x^{2}-x-30=\left(x-6\right)\left(x+5\right)
សម្រួលកន្សោមទាំងអស់នៃទម្រង់ p-\left(-q\right) ទៅ p+q។