រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

a+b=-1 ab=-2=-2
ដើម្បីដោះស្រាយ​សមីការ សូមដាក់ផ្នែកខាងឆ្វេង​ដាក់ជាកត្តា​ដោយការដាក់ជាក្រុម។ ដំបូង ផ្នែកខាងឆ្វេងត្រូវតែសរសេរឡើងវិញជា -2x^{2}+ax+bx+1។ ដើម្បីរក a និង b សូមបង្កើត​ប្រព័ន្ធដែល​ត្រូវដោះស្រាយ។
a=1 b=-2
ដោយសារ ab ជាចំនួនអវិជ្ជមាន a និង b មានសញ្ញាផ្ទុយគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន ចំនួនអវិជ្ជមានមានតម្លៃដាច់ខាតធំជាង​ចំនួនវិជ្ជមាន។ មានតែគូដូច្នេះប៉ុណ្ណោះគឺជាចម្លើយរបស់ប្រព័ន្ធ។
\left(-2x^{2}+x\right)+\left(-2x+1\right)
សរសេរ -2x^{2}-x+1 ឡើងវិញជា \left(-2x^{2}+x\right)+\left(-2x+1\right)។
-x\left(2x-1\right)-\left(2x-1\right)
ដាក់ជាកត្តា -x នៅក្នុងក្រុមទីមួយ និង -1 ក្រុមទីពីរចេញ។
\left(2x-1\right)\left(-x-1\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា 2x-1 ដោយប្រើលក្ខណៈបំបែក។
x=\frac{1}{2} x=-1
ដើម្បីរកចម្លើយសមីការរ សូមដោះស្រាយ 2x-1=0 និង -x-1=0។
-2x^{2}-x+1=0
គ្រប់សមីការរដែលមានទម្រង់ ax^{2}+bx+c=0 អាចត្រូវបានដោះស្រាយដោយការប្រើរូបមន្តកាដ្រាទីក៖ \frac{-b±\sqrt{b^{2}-4ac}}{2a}។ រូបមន្តកាដ្រាទីកផ្ដល់នូវចម្លើយពីរ ចម្លើយមួយគឺនៅពេល ± ជាផលបូក និងចម្លើយមួយទៀតនៅពេលវាជាផលដក។
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-2\right)}}{2\left(-2\right)}
សមីការរនេះមានទម្រង់ស្ដង់ដារ៖ ax^{2}+bx+c=0។ ជំនួស -2 សម្រាប់ a, -1 សម្រាប់ b និង 1 សម្រាប់ c នៅក្នុងរូបមន្តកាដ្រាទីក, \frac{-b±\sqrt{b^{2}-4ac}}{2a}។
x=\frac{-\left(-1\right)±\sqrt{1+8}}{2\left(-2\right)}
គុណ -4 ដង -2។
x=\frac{-\left(-1\right)±\sqrt{9}}{2\left(-2\right)}
បូក 1 ជាមួយ 8។
x=\frac{-\left(-1\right)±3}{2\left(-2\right)}
យកឬសការ៉េនៃ 9។
x=\frac{1±3}{2\left(-2\right)}
ភាពផ្ទុយគ្នានៃ -1 គឺ 1។
x=\frac{1±3}{-4}
គុណ 2 ដង -2។
x=\frac{4}{-4}
ឥឡូវដោះស្រាយសមីការរ x=\frac{1±3}{-4} នៅពេល ± គឺជាសញ្ញាបូក។ បូក 1 ជាមួយ 3។
x=-1
ចែក 4 នឹង -4។
x=-\frac{2}{-4}
ឥឡូវដោះស្រាយសមីការរ x=\frac{1±3}{-4} នៅពេល ± គឺជាសញ្ញាដក។ ដក 3 ពី 1។
x=\frac{1}{2}
កាត់បន្ថយប្រភាគ \frac{-2}{-4} ទៅតួដែលតូចបំផុតដោយ​ដក និងលុបចេញ 2។
x=-1 x=\frac{1}{2}
សមីការរឥឡូវនេះត្រូវបានដោះស្រាយ។
-2x^{2}-x+1=0
សមីការរកាដ្រាទីកដូចសមីការរមួយនេះអាចត្រូវបានដោះស្រាយដោយ​ការបំពេញការ៉េ សមីការរត្រូវតែដំបូងស្ថិតនៅក្នុងទម្រង់ x^{2}+bx=c។
-2x^{2}-x+1-1=-1
ដក 1 ពីជ្រុងទាំងពីរនៃសមីការរ។
-2x^{2}-x=-1
ការដក 1 ពីខ្លួនឯងនៅសល់ 0។
\frac{-2x^{2}-x}{-2}=-\frac{1}{-2}
ចែកជ្រុងទាំងពីនឹង -2។
x^{2}+\left(-\frac{1}{-2}\right)x=-\frac{1}{-2}
ការចែកនឹង -2 មិនធ្វើប្រមាណវិធីគុណនឹង -2 ឡើងវិញ។
x^{2}+\frac{1}{2}x=-\frac{1}{-2}
ចែក -1 នឹង -2។
x^{2}+\frac{1}{2}x=\frac{1}{2}
ចែក -1 នឹង -2។
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{1}{2}+\left(\frac{1}{4}\right)^{2}
ចែក \frac{1}{2} ដែលជាមេគុណនៃតួ x នឹង 2 ដើម្បីបាន \frac{1}{4}។ បន្ទាប់មក​បូកការ៉េនៃ \frac{1}{4} ជាមួយ​ជ្រុងទាំងពីរនៃសមីការរ។ ជំហាននេះធ្វើឲ្យជ្រុងខាងឆ្វេងនៃសមីការរក្លាយជាការេប្រាកដមួយ។
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}
លើក \frac{1}{4} ជាការ៉េដោយលើកជាការ៉េទាំងភាគយក និងភាគបែងនៃប្រភាគ។
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{9}{16}
បូក \frac{1}{2} ជាមួយ \frac{1}{16} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
\left(x+\frac{1}{4}\right)^{2}=\frac{9}{16}
ដាក់ជាកត្តា x^{2}+\frac{1}{2}x+\frac{1}{16} ។ ជាទូទៅ នៅពេល x^{2}+bx+c គឺជាការ៉េប្រាកដ វាតែងតែអាចត្រូវបានដាក់ជាកត្តាជា \left(x+\frac{b}{2}\right)^{2}។
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
យក​ឬសការ៉េនៃជ្រុងទាំងពីរនៃសមីការ។
x+\frac{1}{4}=\frac{3}{4} x+\frac{1}{4}=-\frac{3}{4}
ផ្ទៀងផ្ទាត់។
x=\frac{1}{2} x=-1
ដក \frac{1}{4} ពីជ្រុងទាំងពីរនៃសមីការរ។