ដាក់ជាកត្តា
-x\left(x+4\right)\left(x+8\right)
វាយតម្លៃ
-x\left(x+4\right)\left(x+8\right)
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
x\left(-x^{2}-12x-32\right)
ដាក់ជាកត្តា x។
a+b=-12 ab=-\left(-32\right)=32
ពិនិត្យ -x^{2}-12x-32។ ដាក់ជាកត្តានូវកន្សោមដោយដាក់ជាក្រុម។ ដំបូង កន្សោមត្រូវតែសរសេរឡើងវិញជា -x^{2}+ax+bx-32។ ដើម្បីរក a និង b សូមបង្កើតប្រព័ន្ធដែលត្រូវដោះស្រាយ។
-1,-32 -2,-16 -4,-8
ដោយសារ ab ជាចំនួនវិជ្ជមាន a និង b មានសញ្ញាដូចគ្នា។ ដោយសារ a+b ជាចំនួនអវិជ្ជមាន a ហើយ b ជាចំនួនអវិជ្ជមានទាំងពីរ។ រាយឈ្មោះគូទាំងអស់ដែលផ្ដល់នូវផលគុណ 32។
-1-32=-33 -2-16=-18 -4-8=-12
គណនីផលបូកសម្រាប់គូនីមួយៗ។
a=-4 b=-8
ចម្លើយគឺជាគូ ដែលផ្ដល់នូវផលបូក -12 ។
\left(-x^{2}-4x\right)+\left(-8x-32\right)
សរសេរ -x^{2}-12x-32 ឡើងវិញជា \left(-x^{2}-4x\right)+\left(-8x-32\right)។
x\left(-x-4\right)+8\left(-x-4\right)
ដាក់ជាកត្តា x នៅក្នុងក្រុមទីមួយ និង 8 ក្រុមទីពីរចេញ។
\left(-x-4\right)\left(x+8\right)
ដាក់ជាកត្តាលក្ខណៈធម្មតា -x-4 ដោយប្រើលក្ខណៈបំបែក។
x\left(-x-4\right)\left(x+8\right)
សរសេរកន្សោមដែលបានដាក់ជាកត្តាពេញលេញឡើងវិញ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}